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Abstract

Detection of obstacles for autonomous vehicles is more diffi-
cult when the terrain is not locally planar and remains an
open problem. We have developed an approach suited for
obstacle detection in those cases where the terrain has signifi-
cant curvature but is smooth enough that the obstacles are dis-
crete. Our system consists of a low-cost scanning laser
rangefinder and a novel algorithm that can reliably detect
obstacles as small as 15 cmin curving terrain. This paper pre-
sents an analysis of the effectiveness of our system and a sum+
mary of experimental results from an outdoor mobile robot.

1. Introduction

Obstacle detection is a key capability for autonomous
vehicles and remains an open problem. The problem is
complicated during operation in hilly (high-curvature)
terrain because the natural rise and fall of theterrain can
be construed as an obstacle or worse, the curvature can
lead to missing an obstacle altogether. In some cases, it
is possible to assume that the terrain although curved, is
locally smooth and hence the obstacles appear dis-
cretely. Parklands and golf courses are good examples
of this type of terrain. Here we address an obstacle
detection system suited to such environments. Since we
target real-world commercia application, we add the
requirements that the system be sensitive (able to detect
obstacles as small as 15 cm), robust (operate in varying
lighting and environmental conditions with a low false
alarm rate) and inexpensive.

A large body of work in obstacle detection for outdoor
vehicles uses range imagery from one of stereo vision,
ladar or radar. Stereo vision provides dense range imag-
ery but generally is not able to provide the range resolu-
tion to detect small obstacles reliably especialy given a
variety of natural textures and lighting conditions
[3][9][16]. Radar isimmune to alarge range of environ-
mental conditions and works well for detecting vehicle
sized obstacles but itslarge beam size prevents detection
of small obstacles and produces only coarse localization
for the targets that it does detect [8]. Ladar has the abil-
ity to detect small obstacles because of small beam
divergence but generally requires mechanical scanning.
While flat indoor environments and operation at low
speeds allow the use of a single horizontally scanned
beam pointed straight ahead of the vehicle [12] this
approach generally doesn't work outdoors and espe-

cially when the terrain curves significantly. One solution
isto use a 2-D scanning ladar that has a scanning pattern
similar to that of atelevision [6]. Such systems are not
only very expensive but require accurate measurement
of the vehicle motion during the scan to properly regis-
ter the range data. In addition to the above methods
there has been work on abstacle detection using passive
vision. Our own work in the past has used two of these
methods -- color segmentation and homography to
detect obstacles [2]. Although well understood, these
modalities can fail due to variations in lighting (color
segmentation) and changes in elevation (homography).
Additionally, color segmentation fails in cases where
geometry does matter -- finding an unexpectedly col-
ored patch of ground can result in a false adarm while
true obstacles that might have the color of the expected
terrain are not detected.

In this paper we present a novel, low-cost ladar scanner
whose configuration removes the need for accurate mea-
surement of vehicle motion for registration of range
data. We also present a simple algorithm that is able to
reliably detect obstacles as small as 15 cm traveling at
speeds up to 2 m/s. The main advantage of this method
isthat it has a point density comparable to that provided
by stereo algorithms, with the accuracy of a ladar. It is
also robust to the problems that passive vision systems
suffer from. The obstacle detection algorithm is suitable
for terrain in which all areas are assumed to be equally
traversable except for those occupied by obstacles. This
is in contrast to agorithms which search for paths
through unstructured terrain by building explicit travers-
ability maps[16]. Our method does not provide travers-
ability measures, but only information regarding the
presence (location and geometry) of obstacles. It can,
however, be used as a source of information to populate
maps which can be evaluated for traversability.

Section 2 provides some detail on three modalities
(color segmentation, homography, single axis ladar
scanner) that we have used in prior work and discusses
their shortcomings. Section 3 presents our new approach
and an analysis of sensitivity of the method based on
parameters such as sensor placement. Section 4 presents
experimental results from our testbed.



2. Obstacle Detection

In this section, we discuss previous approaches to obsta-
cle detection which make use of passive vision and sin-
gle axisladar scanning, and present their failure modes.

2.1. Color Segmentation

Color segmentation for navigation and obstacle detec-
tion uses color information to detect the presence of
obstacles. Previous research has used various represen-
tations of color and different methods to generate mod-
els of obstacles and non-obstacles[7][10][15]. There are
three underlying assumptions that are common to color
segmentation algorithms regardless of the implementa-
tion details: 1) The “obstacle” and “freespace” classes
can be adequately modeled using the chosen color rep-
resentation, 2) in the chosen representation, the two
classes are truly distinct, with little overlap, and 3) The
geometry of the scene is not important to determining
whether a feature is an obstacle. The first assumption
holds if we assume that the color of the terrain the
mobile robot will be operating over is homogenous.
However, even with this assumption, lighting changes
due to shadows, clouds, and time of day can dramati-
cally alter the appearance of both the terrain and obsta-
cles. This can result in a high number of false positives.
This can be partially overcome by dynamically training
the classes as lighting conditions change.

The second assumption, regarding the distinctiveness of
the “obstacle” and “freespace” classes, is one which is
not true in many cases, and results in false negatives.
For example, if operating on grass, a false negative can
occur if a green shrub or branch is encountered. The
color of the obstacle in this case is very similar to, and
overlaps, the color of the “freespace” class. Similarly, if
the third assumption, that of geometry not being impor-
tant, is violated, false positives result. Consider an area
of white sand in the middle of a grassy area. The white
sand will have a different color than the “freespace”
color, and will appear as an obstacle, even though it is
traversable. Since color segmentation does not take the
geometry of the scene into account, it can fail in condi-
tions where the geometry does matter. The next section
discusses an approach to overcome this limitation.

2.2. Homography

Homography is a planar mapping, which can be com-
puted using a stereo image pair. That is, if we assume
that the features being imaged lie on a known plane and
that the displacement between the two cameras is
known, it is possible to predict where features in one
image will be found in the other image. Therefore, it is
possible to detect whether a particular image feature lies
on the assumed ground plane. Unlike traditional stereo,

Figure 1: Examples of homography behavior. The images
on the left are the right image from the stereo pair, and the
images on the right are the output. The output is a thresh-
olded difference image between the warped and actual
images. The top pair is a true positive - the bag is properly
detected. The bottom pair is a false positive. The paper is
detected as an obstacle, since it is laying on a hill, above
the assumed ground plane.

there is no disparity search, as explicit range values are
not computed. The complexity is O(n) in the number of
pixels.

Given a two-camera stereo pair, we can compute the
homography between a common plane in both images.
If we assume that the world is localy flat, then the
homographic transform between both cameras can be
computed. This can be used to warp images from one
camera into the expected image from the opposite cam-
era. If al the image features in the first image are on the
ground plane, then the correspondence between the
warped image and the actual opposite image will be
high. If, however, certain image features do not liein the
ground plane, the warping process will distort the fea-
tures, and the difference can be detected.

The underlying assumption is that the ground is locally
flat. Much of the previous work in using homography
for obstacle detection has been on either indoor mobile
robots [13][14], or highway settings [1][4], where this
assumption holds. This approach breaks down when
there are local elevation changes. Features which are on
the (elevated) ground are warped as if they lay on the
plane for which the homography matrix was computed.
This leads to false positives, as shown in Figure 1. The
left images are input (in this case, one image from the
stereo pair), and the right images are classified output.
The top pair shows a bag properly classified as an obsta-
cle, since it rises above the (flat) ground plane. The bot-
tom pair, however, shows a piece of paper lying on the
upslope of ahill. Although flat on the ground, the paper
is not lying on the assumed ground plane, and is instead
aboveit. Therefore, it isnot properly warped and is clas-
sified as an obstacle.



2.3. Single-Axis Range Scanning

Traditionally, single-axis ladar scanners are used in
either a “forward looking” or “push-broom” configura-
tion [12]. The former positions the laser such that each
beam scans outwards, without intersecting a flat ground
plane. The advantage of this configuration is that any
return at all can be construed as an obstacle. The disad-
vantage is that the sensor height determines the mini-
mum obstacle height which can be detected. In addition,
platform pitching motion or elevated terrain can pro-
duce false darms.

Alternatively, the sensor can be placed in push-broom
configuration, in which it intersects the ground plane in
aline at some distance ahead of the vehicle The sensor
can then detect arbitrarily small obstacles, to the limit of
its resolution. The disadvantage is that pitching motion
is gtill confounded with obstacles. If the platform were
to pitch downwards, al the returned ranges would be
less than expected, making it appear as if an obstacle
were present. It is possible to assume that the majority
of laser beam returns are actually from the ground plane.
We have implemented robust curve fitting to the return,
using a Least Trimmed Squares (LTS) approach.
Detected outliers from the computed fit are considered
to be obstacles. We have implemented this and it is
robust to pitching motion and small changesin local ter-
rain elevation. However, this method fails in the pres-
ence of certain types of obstacles. In particular, if there
is alarge obstacle which subtends most of the laser field
of view, LTSwill fit asurface to that obstacle, determine
there are no outliers, and report a false negative. This
highlights one important failure mode of single-axis
scanners, which is that they are not able to detect in the
direction of travel. |.e,, range discontinuities which are
perpendicular to the sensor motion can be detected, but
any discontinuities which are parallél to the direction of
motion are not detected, unless time histories of scans
are kept and maps are built. Keeping time histories
allows range data to be registered precisely when vehi-
cle attitude can be measured at a high rate but gaps
between successive scans due to the vehicle motion can
be larger than obstacles we would like to detect.

3. Two-Axis Range Scanning

Given the limitations and failure modes of the previous
methods, we have developed a two-axis laser range
scanner. Conventional two-axis scanners are expensive.
Furthermore, they offer range and resolution beyond
what is required for many applications. Therefore, we
have adapted alow-cost single line laser range finder to
operate as a two-axis scanner by rotating it so that the
laser scans vertically instead of horizontally, and then
mechanically sweeping it from side to side to provide
horizontal coverage. This scanner provides 75 scang/

second, where each scan covers 100 degrees, at one
degree resolution. In this context, a scan is one line of
laser data, scanned vertically. A sweep is a set of scans,
collected as the laser is mechanically swept from left to
right (or right to left). We conducted a simulation study
to determine the ability of the laser to cover a desired
area at a high enough resolution, along with expected
obstacle detection performance.

3.1. Coverage and Sensitivity Analysis

There are a number of parameters which affect the
behavior of the two-axis scanner. These include scan-
ning rate, sweeping rate, sweeping range, and sensor
placement (height and downangle). Platform motion and
maximum velocity is also a consideration. We per-
formed a sensitivity analysis, to determine how changes
in the above parameters affect field of coverage and
obstacle detection sensitivity.

For example, if the laser is placed high, the coverage
pattern it generates tends to be relatively uniform. How-
ever, the “shadow” cast by alaser beam hitting an obsta-
cle is concurrently smaller, and fewer beams hit the
obstacle, reducing sensitivity. An increase in laser
sweeping rate will decrease the time between a particu-
lar area being imaged, but will also reduce the horizon-
tal resolution of each individual sweep. Physical and
sensor constraints, such as angular rate limits, laser
scanning rate limits, etc. have to be accounted for. We
therefore evaluated parameters with the goal of being
able to detect 6” (15cm) obstacles assuming a vehicle
width of 1.8m. If we assume the platform istravelling at
1m/s, then obstacles should be detected at a distance of
2.0m to allow for adequate stopping distance, assuming
a 0.8G braking acceleration, and a reasonable safety
buffer.

We evaluate parameters by analyzing the resulting cov-
erage pattern. A simulation is used to generate the syn-
thetic range data from a moving laser. We first bin each
laser beam'’s intersection with a flat ground plane into a

5cm? grid. After that, each grid cell is either covered,
meaning that at least one laser beam intersects it, or
uncovered, which means that no beam intersects it. We
then compute the percentage of covered cells, and aso
do a blob size analysis on 8-neighbors of uncovered
cells to determine the area distribution of uncovered
regions. The top of Figure 2 showsthetrend in coverage
percentage for two laser heights, low (0.78m) and high
(2.8m), as the fixed downangle is varied. The x-axis is

downangle, and the y-axis is the percentage of 5cm?
cells which are covered. As downangle increases
beyond a certain angle, the coverage deceases, due to a
majority of the beams being concentrated very close to
the sensor. Thisresultsin very dense coverage in certain
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Figure 2: Comparison of coverage percentage vs. laser down
angle for two laser height configurations (top) and histograms
of uncovered area size (bottom)

areas, and very sparse coverage in other areas. Note that
the higher placement results in better coverage. Figure 2
also shows two histograms of the area of uncovered
cells. The top histogram is with the laser placed high,
the bottom histogram is with the laser placed low. In
both histograms, the size of the majority of uncovered

areasis 1 grid cell, or 0.05m?. Thereisadlightly greater
proportion of larger missed areas in the low configura-
tion, due to coverage becoming less homogenous as the
sensor is lowered.

However, coverage alone is not a sufficient predictor of
obstacle sensitivity. What is most important is the num-
ber of laser beams that hit a particular obstacle, since
that will determine how reliably the obstacle can be
detected. The number of beams that hit an obstacle is
rel ated to the shadow length of the obstacle, whichisthe
length of the shadow cast by the obstacle when illumi-
nated by the laser sensor. The shadow length can be cal-
culated as:
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Figure 3: Two-axis scanner prototype

where Ly, is laser height, O, is obstacle height, Oy is
obstacle distance, and S is shadow length. From the
above, it would appear that as obstacle distance
increased, the shadow length would increase, resulting
in greater detectability. However, at greater distances,
the fixed angular interval of the laser scan results in a
greater linear distance between beam hits. The follow-
ing equation can be used to compute expected number

of beam hits:
Oy +
3

where Risthe angular resolution of the scan, and Hitsis
the expected number of hits. The other parameters are
the same as in equation 1. From this, we can see that a
lower sensor height results in a dightly greater number
of hits, and a significantly larger shadow. Sensor cover-
age, however, is more uniform with the laser in the high
configuration.

Therefore, thereis atrade-off between a high mount and
alow mount. The high mount provides better coverage,
particularly at greater ranges. The low mount resultsin a
dightly greater number of hits on a given obstacles. The
better coverage of the high mount can significantly
impact detection of small obstacles at greater range.
However, at greater heights, unmeasured roll of the plat-
form can induce significant registration error. Therefore,
we have determined that a low mounting height is pref-
erable.

We have constructed a prototype of this configuration,
and it is shown in Figure 3. The following section
describes a novel obstacle detection algorithm which
operates on 2-D range data, and results.
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Figure 4: Obstacle Detection Algorithm overview. Each scan
is classified as “obstacle” or “freespace”. Obstacle pixels
from groups of scans are clustered using nearest-neighbor to
generate candidate obstacles. Candidate obstacles are fil-
tered based on gross statistics.

3.2. Obstacle Detection Algorithm

The obstacle detection algorithm consists of two stages:
classification, and fusing. As scan lines come in, each
range point in the scan is classified as ‘obstacle’ or
‘freespace’. Scans are accumulated, and then obstacle
pixels are clustered using a nearest-neighbor criterion,
and candidate obstacles are then filtered based on statis-
tics such as mass and size. Figure 4 illustrates this pro-
cedure.

The novelty of this algorithm isthat point clustering and
scan fusing is done in such away as to be robust to data
mis-registration and hence fal se positives.

Thefirst stage, classification, is fundamentally gradient-
based. Gradient algorithms, as the name suggests, con-
vert laser range datainto cartesian coordinatesin a vehi-
cle-centric frame, and calculate the terrain gradient and
look for areas which are not traversable based on slope.
Our gradient calculation and classification method is
similar to the method proposed by Chang [5]. Their
algorithm processes each scan as it is accumulated, and
classifies returns as obstacle or freespace based on gra-
dients and heuristics. In our approach, as each scan is
accumulated, it is registered to a fixed coordinate frame
to account for platform motion. The gradient is com-
puted along the dimension of the scan line. Thisis done
in real time as each scan is received. A threshold is
applied to the gradient to classify each pixel as ‘obsta-
cle’ or ‘freespace’ . Each classified scan is then added to
acircular buffer which contains a time-history of scans.
The duration of this ‘time-window’ determines the
amount of data which will be fused when clustering.

At regular (user specified) intervals, the points classified
as obstacles are clustered using a nearest-neighbor
approach. The nearest-neighbor approach is in contrast
to the conventional approach of registering al the data
to a common frame, and then classifying pixels, which
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Figure 5: Profile view of a 22cm (9”) obstacle at the foot of a
slope.

can lead to false positives due to mis-registration of
data. Our approach avoids this by clustering obstacle
pixels after they are classified. Therefore, small mis-
registrations in the data lead to small errors in gross
obstacle statigtics, rather than errors in deciding whether
an obstacle is present. The latter is relatively minor,
while the former can lead to undesired stopping or
obstacle-avoidance behavior. Thisis similar in motiva-
tion to previous work which merges traversability maps
created from instantaneous range images rather than
merging elevation maps because of indeterminacy of
vehicle motion in between images [16].

There are two parameters which control the behavior of
the algorithm: the gradient threshold, and the time win-
dow. The output rate is another parameter, but does not
affect results. It is a function of available computing
power -- a faster CPU can support a faster output rate
than a slower CPU.

4. Results

The following sections present results using real data
taken from the two-axis scanner. The scanner has been
mounted on an autonomous vehicle with high precision
GPS-based localization, which provides 2cm accuracy.
We present results of atest of obstacle detection sensi-
tivity, using the algorithm presented in the previous sec-
tion.

4.1. Obstacle Detection Results

We tested obstacle detection performance in two situa-
tions: flat terrain and curved terrain. Three different
sguare obstacles were used, with side lengths of 15cm,
22cm, and 30cm. The tests were conducted on amoving
platform. An initia pass over obstacle-free terrain was
used to adjust the gradient threshold such that no false
positives were generated. When testing on hilly terrain,
each obstacle was placed at the foot of a steep (20%
grade) hill. We started 10m away from the obstacle and
drove towards it at 1.5m/s, stopping at a distance of
0.5m from the abstacle. Figure 5 shows a point cloud (in
profile) of a 22cm obstacle at the foot of a 20 degree
dope. The obstacle pixels are visible at the beginning of
the slope. Note the unevenness at the beginning of the
upslope. This is due to registration errors from unmod-
eled pitch motion. The obstacle detection algorithm is
robust to such errors.



Table 1 shows results for combinations of obstacle size,
terrain type, and time-window on flat and hilly terrain.

Table 1: Max Distance (m) at which Obstacle (cm) is
Reliably Detected for Flat (Hilly) Terrain Using Different
Time Windows (s)

Obs Size
15cm (6”) | 22cm (9") | 30cm (127)
Window
0.5s 328(2.13) | 4.24(4.00) | 6.15(7.01)
1.0s 315(1.90) | 4.38(4.05) | 7.45(7.13)
15s 3.09(1.83) | 4.30(4.09) | 7.50(7.07)
2.0s 3.25(1.89) | 4.24(4.05) | 7.73(7.00)

The time-window parameter controls how much datais
fused when detecting obstacles. The entries in the table
show the distance to obstacle when it was first detected.
l.e, this is the maximum distance at which we can
expect to detect the obstacle. We seethat in all cases, the
obstacle is detected earlier on flat terrain than on hilly
terrain. Thisis most likely due to our use of a steep gra-
dient threshold, combined with low density sampling at
far (> 3m) distances due to the geometry of the laser. In
all cases, the obstacles were detected within the stop-
ping distance of the mobile platform we use, which trav-
els at 1.5-2m/s. Interestingly, the time window has very
little impact on the detection distance. This is because
the robustness to false positives is great enough that the
algorithm can reliably detect an obstacle with a small
number of hits at extreme range. The additional hits
later on do not add to the detectability, although they do
add to the confidence. For instance, at 2.0m, a 15cm
obstacle generates 9 hits with a time window of 0.5s.
However, if the time window is 2.0s, then there are 32
hits.

5. Conclusion

This paper has discussed failure modes of common
obstacle detection methods which rely on passive cam-
eras and single-axis laser scanners. Following that, we
presented a simulation analysis of a proposed two-axis
system which islow cost, and provides sufficient resolu-
tion to detect small obstacles. The simulated perfor-
mance was bourne out using real hardware mounted on
a mobile platform. Our proposed obstacle detection
algorithm is robust to false positives, and is sensitive
enough to detect small obstacles.
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