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Abstract— The paper presents two different methods for mo-
bile robot tracking and following of a fast-moving person in
outdoor unstructured and possibly dynamic environment. The
robot is equipped with laser range-finder and omnidirectional
camera. The first method is based on visual tracking only and
while it works well at slow speeds and controlled conditions,
its performance quickly degrades as conditions become more
difficult. The second method which uses the laser and the
camera in conjunction for tracking performs well in dynamic and
cluttered outdoor environments as long as the target occlusions
and losses are temporary. Experimental results and analysis are
presented for the second approach.

I. INTRODUCTION

We describe a mobile robotic system for tracking and
following moving people. Such a system provides impor-
tant capabilities for human robot interaction and assistance
of humans in various settings. That is why tracking with
mobile robots has been an active research area with many
successful systems developed, such as for museum guidance
[1], hospital assistance [2], or pedestrian tracking [3]. Most of
these systems are designed to operate indoors or in flat and
structured outdoor environments and at limited robot speed.
Our goal, on the other hand, is to enable a mobile robot to
track and follow a fast moving person (of speeds near 3 m/s),
in an outdoor, potentially cluttered, and dynamic environment
where the sensors are subject to more noise and the tracked
person can be occluded or lost for short periods of time. Such a
capability is important for robots assisting humans in rougher
and more difficult environments. Typical applications include
disaster-rescue missions or military mules carrying equipment
and assisting soldiers.

Tracking under the above requirements is harder and often
systems proved to work well normally are ineffective in such
adverse conditions. Thus, we think that it is useful to describe
our experience building two such systems, each having its own
benefits and shortcomings. The first system we describe detects
and tracks motion from visual input only and uses a laser
range-finder to estimate the range to the centroid of motion in
the camera image, while the second approach uses the laser
as primary sensor and camera as secondary.

The first approach uses egomotion compensation in trans-
formed perspective images and frame differencing to detect
motion. A particle filter is then used to track the motion and
an EM algorithm to cluster and find its centroid [4]. The

second system uses the laser to extract the 3D relative position
of blobs that might have originated from a person and uses
these as measurements to a probabilistic data association filter
(PDAF). The PDAF is augmented using “feature likelihoods”
for each measurement that correspond to a color distribution
template match of an area in the image covering the corre-
sponding laser blob. The main contribution of this paper is to
present the extension and analysis of existing methods in a
more difficult setting than previously tried by others.

Our platform is the two-wheel dynamically balancing Seg-
way Robot Mobile Platform (RMP) which is well suited for
outdoor conditions. It has maximum speed of 3.5 m/s, can
climb slopes of 17o (without load) and with a good set of
tires can overcome small obstacles and uneven terrain. The
robot has a human-size footprint and can carry loads up to
100 lbs. It is equipped with a passive SICK laser and an
omnidirectional camera. While the omnicam has a 360o field
of view and a single center of projection, a single camera
alone cannot provide reliable range to the tracked person, since
it is usually moving along the line of robot translation (thus
accurate triangulation from multiple views is not possible). On
the other hand, the laser provides range but only in a single
plane and we do not assume that the laser sensing plane always
intersects with the person (e.g. the robot could be pitching too
much, or the human might simply be on a different terrain
elevation out of laser sight). If tracking and following are
stable enough though, the robot can be guaranteed to always
be close to the person therefore the terrain between robot and
person can be approximated by a plane. Alternatively, it is
possible to use stereo vision but a major requirement for this
project is a very wide field of view in front of the robot in order
to guarantee stable tracking of a fast maneuvering person. At
the time this project was developed we did not consider an
actively controlled stereo head or a wider field of view (i.e.
fish-eye) stereo pair. These options remain to be explored in
future work.

The main requirements for the system include reliable
motion detection, motion tracking through accurate estimation
of the state of the moving person and stable following of the
person.
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II. RELATED WORK

There are a variety of human visual tracking approaches that
differ mainly in the feature extraction and motion modeling.
Aggarwal and Cai [5] provide an overview of interpreting and
tracking human motions using cameras. Most methods extract
and track features based on simple cues such as color, texture,
or shape contour. There are a number of different filtering
techniques to estimate the targets states. Rasmussen and Hager
[6] use a joint probabilistic data association filter (JPDAF) to
track multiple parts of the human body by extending the filter
to include constraints between the parts. MacCormick and
Blake [7] use a sampling based joint data association filter for
multiple object tracking based on probabilistic exclusion. Cox
and Hingorani [8] use multiple hypothesis tracking (MHT) to
resolve association uncertainties between corner feature track-
ing using Kalman filters. Davis et. al. [3] use the condensation
algorithm with quasi-random sampling to track a deformable
shape model of humans. Jung and Sukhatme [4] use egomotion
compensation, and track the difference image between two
frames using a particle filter.

Motion model based tracking using range and bearing (e.g.
from laser range-finders) has been an active area of research
for decades, mostly inspired by applications for air and ground
vehicle and missile tracking using radar or sonar sensors [9],
[10]. Such systems employ various filtering techniques such as
Kalman filter (with extensions such as cascading or interactive
multiple model filters(IMM)), PDAF, JPDAF, MHT, set theory
based filtering. Such techniques can be directly applied to
tracking humans using a mobile robot. One system which
extends the JPDAF method is the sampling-based JPDAF
developed by Schulz et. al. [11] that replace the underlying
EKF in the JPDAF with a particle filter. They also employ
an occlusion probability map to explicitly deal with target
occlusions in the filter.

There have been several research groups which have also
successfully used the Segway RMP for tasks involving track-
ing and following of moving people (e.g. [12]). These works
use simplified and less robust tracking methods to demonstrate
higher level capabilities.

III. SENSOR CONFIGURATION

The robot (fig. 2) is a rigid body operating in 3D workspace.
Let the robot frame correspond to a transformation AT of a
fixed global frame. The laser and camera are rigidly attached
to the robot with corresponding transformations (with respect
to the robot frame) L

AT and C
AT . A laser range-finder reading

of range d and bearing β corresponds to a 3D point in
homogeneous coordinates:
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The same point in the camera coordinate frame is
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Fig. 1. Laser and omnidirectional camera configurations

.
We have experimented with two catadioptric adapters: a

NetVision360 by Remote Reality, and a larger model made
by EyeSee360. The two types have similar configurations and
here we briefly describe the NetVision360 setup. It consists
of a parabolic mirror and orthographic lens. The camera’s
intrinsic parameters include only the raw image center (xc, yc)
and the combined projection focal length f . These three
parameters are easily determined by direct observation of the
image since the lens mirror is entirely visible. We assume that
the lens mirror axis is parallel to the camera axis and we do
not account for skew of the image sensor. Alternatively, the
camera could be automatically calibrated using the parallel line
method [13] or [14] using feature correspondences. Using the
mirror transformation derived in [15] point P projects onto
image coordinates (u, v) according to:

(
u
v

)
=

(
xc + r cos θ
yc + r sin θ

)
,

r = f(
√

tan2 φ + 1 − tan φ)

θ = atan2(cy,c x), φ = atan2(cz,
√

cx2 +c y2)

Fig. 2. Segway RMP
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The spherical coordinates θ and φ are the azimuth and
elevation of CP and r is the radial coordinate of its projection
in the camera frame (fig. 1). The inverse transformation
from image coordinates to a unit vector pointing at point
P in the global frame can be computed accordingly. The
equations above define the geometric relationship between the
measurements of the two sensors.

The robot pose AT is computed from the on-board gyros
providing pitch and roll and from odometry providing yaw
and position. Although we have implemented a fast full pose
egomotion estimation (visual odometry) algorithm using the
panoramic camera based on Bruce and Horn’s method [16],
our recursive tracking methods are only sensitive to the frame-
to-frame pose estimation error which justifies using unfiltered
odometry and gyro readings.

IV. EGOMOTION COMPENSATION AND FRAME

DIFFERENCING METHOD

Jung and Sukhatme [4] show that frame differencing can be
used to detect and localize motion in sequences of monocular
perspective images. They track corresponding features in each
frame using the Lukas-Tomasi-Kanade (LTK) feature tracker.
They compensate for egomotion by computing a bilinear
pixel transformation between consecutive frames using linear
regression on the tracked correspondences. The aligned images
are then differenced and the resulting grey-scale image is used
as a measurement to a particle filter. In order to use this system
we transform the raw omnidirectional image into a set of
perspective images with equally spaced (i.e. 45 degrees) view
axes and the same field of view. A pixel in the omnidirectional
image is transformed to a pixel in a perspective image by first
finding the vector parallel to the corresponding world point in
the camera frame (see sec. III) and then finding the intersection
of this vector and a perspective image plane. In order to avoid
the effect of aliasing, optic flow (using LTK) is performed
on the original raw image and the coordinates of each pair
of corresponding features are transformed to local coordinates
in the perspective image they project onto. Then egomotion
compensation and frame differencing is done separately on
each perspective image, and the combined result is again input
into a particle filter. An EM clustering algorithm is used to
localize the peaks of the resulting particle motion distribution.

A benefit of this approach is that motion is tracked only
from visual input and the laser is only used to find the range
of each moving object. If the object is not likely to intersect
the laser sensing plane then tracking can still continue, for
example, by approximating the range using prior knowledge. A
major shortcoming of this method though is that the egomotion
compensation step assumes that camera images originate from
an affine projection. In the setting of our project, a scene can be
cluttered with close obstacles, such as trees, corners, or other
people. Such conditions violate the affine transformation and
the output from frame differencing becomes unreliable. While
this is not so problematic during slower motion in obstacle free
environment, the performance of the system quickly degrades
at higher speeds . For example, fig. 3 shows a short segment
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Fig. 3. Typical run of the system: target losses occur frequently and above
1 m/s tracking becomes unreliable

of a typical run among obstacles where after occasional losses
during slow speed, at the end of the run, after the robot has
reached 1 m/s the target is lost.

Although the method was not suitable for high-speed track-
ing among obstacles, we presented it since we think it is
beneficial to describe how adverse conditions affect methods
that normally work well. Such problems are likely to arise in
similar motion tracking methods based on monocular vision.

V. LASER AND CAMERA AUGMENTED PDAF TRACKING

While the previous system tracks moving objects from
visual input only, the second system we implemented uses
the laser as the primary sensor. Each laser scan is processed
into connected components (blobs) that might have originated
from people in the laser field of view. Regions in the image
corresponding to each of these objects are then used as ad-
ditional measurements. Thus, multiple hypothesis are formed
about the position and appearance of the tracked target.

We use a probabilistic data association filter (PDAF) which
is an all-neighbor approach to data association under the
assumption of a single target in clutter. It is proved to be
more robust than a nearest neighbor data association scheme
(i.e. single measurement Kalman filter) since its correction
step uses a mixture of all observations residuals and also
accounts for the possibility that none of the observations
are valid [10]. We have implemented two target maneuver
models: constant velocity, white noise acceleration model
(using Cartesian coordinates and their velocities in the global
frame as the target state), and a nonlinear coordinated turn
model with a state vector containing the target turn rate in
addition to the constant velocity model state components.
While both models can capture the random dynamics of a fast
moving person, the second model performs better in cases of
target occlusion since it can account for nonlinear trajectories
and predict more accurately where the target might reappear
after occlusion. We apply two levels of gating: a maneuver gate
based on the maximum possible velocity and acceleration of
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a moving person, and the standard elliptical covariance-based
gate. The PDAF, as well as the maneuver models used are
thoroughly described in [10].

We treat the visual data as feature measurements and
augment the PDAF by computing target-to-clutter feature
likelihoods [9]. A kinematic measurement yj is the position Pj

of the center of laser blob j in a global frame. Since we assume
that this point belongs to a person then we can “lift” it to an
appropriate height h (i.e. centered at the person’s chest) that
would correspond to the center of a visual region of interest
(ROI). Let the x-y global coordinates of the edges of the blob
be (xl

j , y
l
j) and (xr

j , y
r
j ). Let camera spherical coordinates

(θl, φl) and (θr, φr) correspond to points (xl
j , y

l
j , h) and

(xr
j , y

r
j , h). Then we can define the “spherical” visual ROI with

center ((θl+θr)/2, (φl+φr)/2) and size (|θl − θr| , |θl − θr|).
This ROI corresponds to a rectangular ROI in unwarped
cylindrical projection of the raw omnidirectional image. Thus,
the image is unwarped on a cylinder where efficient image
processing can be performed.

Each ROI can be used to compute visual descriptors of
the detected object. These can be based, for example, on
color distribution, intensity frequency analysis, or local motion
analysis. If we denote the tuple of descriptors of blob j by Dj ,
then a feature likelihood ratio can be computed as:

lr(Dj) =
PT (Dj)

PC(Dj)
=

γT (Dj , D̃)

γC(Dj , D̃)

PT and PC are the probabilities that the descriptors have
originated from target and clutter respectively. When a target
track is initiated, a target descriptor D̃ is computed. It can
either be held constant or updated during tracking (e.g. if
light conditions change). Then PT and PC for descriptors Dj

are computed using distributions γT and γC of Dj given the
known a priori D̃.

We have experimented with a simple descriptor based only
on color distribution D(Ij) = {H(Ij)}, where Hj is the color
hue-saturation histogram of the image ROI Ij corresponding
to blob j (the histogram is normalized and its mean value is
subtracted from each component). If the correlation between
two histograms is denoted by:

corr(Hi, Hj) =

∑
k Hi(k)Hj(k)∑

k Hi(k)2
∑

k Hj(k)2

then the likelihood ratio is computed as follows:

lr(Hj) =
γT (Hj , H̄)

γC(Hj , H̄)
=

max(corr(Hj , H̄), 0)
1

1−corrmin

,

where corrmin is a experimentally determined constant denot-
ing the minimum value that the metric corr can take (this is
always a small negative number). From the equation above it is
clear that negative values of corr are treated as zero probability
of detected target, while the probability of clutter detection is
uniformly distributed (since the highest correlation between
two histograms is one). The PDAF association probabilities
are then augmented:

pj = PDe−
1
2 ỹ

′
jS−1

ỹj lr(Hj),

where ỹj and S is the kinematic measurement residual vec-
tor and its covariance matrix, and PD is a fixed detection
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Fig. 4. A segment of a typical run: the solid curve represents robot positions,
connecting to the corresponding estimated position of the human, the vector
arrows show the person’s estimated velocity (the plot shows only every 5-th
estimate)

Fig. 5. Covariance norm of the target state estimate (every 3rd estimate
drawn). A few typical situations during tracking: x (temporary target occlu-
sions), gnd (the robot accelerates, pitches too much and sees mostly ground),
rst (covariance test reset). In this case the tracker is able to successfully handle
such conditions.

probability [10]. It should be noted that color distribution is
a very simple descriptor and is by no means sufficient for
precise detection. While more sophisticated descriptors and
detection probability distributions can be used, using color
alone is inexpensive while still providing some level of target
discrimination. We plan to extend the types of descriptors in
future work.

VI. EXPERIMENTS

We conducted a number of experiments in a grassy park area
with scattered trees and small bushes. We report results only
for the second method presented since the first method often
failed as described earlier. Fig. 4 shows a segment of a typical
run during which the robot covers an area of 50x50 meters de-
veloping maximum speeds of 2.2 m/s. The person’s estimated
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velocity vectors are plotted as arrows. This particular run was
chosen because it demonstrates several interesting situations
that could happen during tracking. Fig. 5 shows the path of the
human and the state estimate covariance norm as vertical bars
for the same run. Since the RMP is dynamically balancing
it pitches forward/backward when accelerating/decelerating.
Often, during acceleration the laser on the robot can “loose”
the human and see only the ground between the robot and the
person. Such situation is marked as gnd in fig. 5. Whenever
this happens, there are no valid measurements of the human,
but there could be possibly measurements arising from clutter
(i.e. nearby trees or bushes). Thus, the error of the estimate
grows quickly and the tracker can either lock on a wrong
target or it can simply continue tracking an invisible target
with very large error. In our implementation, we have a
maximum allowed error (usually 5 standard deviations of the
measurement model) which will cause the robot to stop, and
reinitiate the track. This is denoted by condition rst which
occurs twice in fig. 5. Apart from ground effects, we had other
people cross the path between the laser and human (marked
with x), as well as walk together with the tracked person and
then cross the path. In almost all cases the system was able to
cope with such temporary occlusions (e.g. fig. 6). Of course, in
a situation where an external person completely occludes the
tracked one, for example, by walking right behind him for a
long time, the system would quickly lock on the wrong one. In
such cases, a more sophisticated set of visual descriptors must
be used so that the tracker can reacquire the correct human
after the occlusion.

We have used two different following controllers based
on direct following and path following. The direct following
controller minimizes the absolute relative bearing to the human
and the absolute difference between the relative range and a
desired following range. The path following controller is a
pure pursuit type of path tracker which tracks the local path of
the human at a desired following distance. Both controllers as
well as the desired following distance account for the dynamic
and kinematic constraints of the robot.

We measure the combined tracking and following perfor-
mance based on the average following error, robot speed, and
the range and bearing to target throughout a single run. The
following error is computed as:

Efollow = r − dfollow − v2

2amin
,

where r is the range to human, dfollow is desired following
distance, v is the current robot speed and amin is the maximum
robot deceleration. A small segment of a typical run is shown
on fig. 7. For this case the following error is always within 0.5
meters and the bearing does not exceed 30o. Average values
for the four measures for 12 3-minute long runs are given in
table I. The average following error in this set of runs was
30 cm at an average robot velocity of 1.5 m/s. During all
runs there were a total of 21 rst conditions, 17 out of which
the robot could handle by resetting on the correct target. 19
rst’s were caused by the laser seeing the ground for at least
2-3 seconds and 2 by long occlusions caused by other people

Fig. 6. Output from the omnicam during tracking among trees: the robot is
following the person in the middle (top frame - small circle indicates target
position estimate), while another person (from the left) is crossing the path
between the robot and the first person
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Fig. 7. A 30 sec. segment of a typical run at moderate speed. The following
error is within 0.5 meters and the bearing to human is less than 30o.

standing for too long in the path between the robot and tracked
person.

VII. CONCLUSION

The paper presents two different methods for people track-
ing and following.

The first method suffers from failures because the egomo-
tion compensation method used does not account for the actual
structure of the environment and thus static nearby objects
affect the frame differencing step. This is especially true at
higher speeds among obstacles when clearly static objects
violate the affine projection model assumption of the method.

Since the second method uses relative 3-D target position
as measurements it is more robust in difficult environments as
long as the target occlusions are short. In the future we plan
to extend this system to use full depth measurement sensors
such as a fast moving pan-tilt stereo head with wide field of
view fish-eye lenses. Thus the laser blob extraction component
can be replaced with a more robust 3D blob extraction based
on depth and geometric human appearance templates (e.g.

561



ravg bavg vavg erravg vmax

2.91 0.22 1.30 0.70 2.17
4.04 0.16 1.49 0.30 2.25
3.99 0.14 1.49 0.23 2.16
3.74 0.18 1.44 0.15 1.67
3.56 0.15 1.42 0.15 1.77
5.11 0.14 1.72 0.40 2.30
5.46 0.12 1.78 0.44 2.27
3.29 0.14 1.32 0.18 1.71
4.39 0.15 1.56 0.30 2.41
3.91 0.14 1.49 0.24 2.06
4.40 0.12 1.59 0.24 2.06
3.66 0.16 1.38 0.27 1.91
4.04 0.15 1.50 0.30 2.06
0.72 0.03 0.15 0.15 0.25

TABLE I

AVERAGED ESTIMATES FOR 12 RUNS OF 2-3 MINUTES EACH: ravg -

RANGE; bavg - ABSOLUTE BEARING; vavg - ROBOT VELOCITY; erravg -

ABSOLUTE FOLLOWING ERROR; vmax - MAXIMUM ROBOT VELOCITY. THE

BOTTOM TWO ROW SHOWS THE MEAN AND STANDARD DEVIATION OF THE

FOUR MEASURES OVER ALL 12 RUNS.

[17]). 3D kinematic data combined with more sophisticated
conjunctions of visual cues and constraints (e.g. [6]) would
constitute a powerful set of features for data association. A
tracker based on such a framework would be more robust to
clutter, occlusions, and noisy environments. We plan to adopt
these methods and improve the performance of the presented
system in our future work.
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