
Abstract-- In this paper, we describe a preliminary analy-
sis of driver data collected during a recently completed
small scale data collection effort. We will demonstrate
that a popular method for computing Time To Lane
Crossing (TLC) does not always accurately predict the
driver’s actual TLC. We will then use a memory based
learning approach to show why this is. Finally, we will
present results in predicting the driver’s future lane
position using the new memory based approach.

Index terms-- lane departure warning, driver model,
Time to Lane Crossing, TLC, memory based learning,
Navlab

I. INTRODUCTION

This paper describes recent work in analyzing driver
data collected using a CMU Navlab, along with work
in developing driver models for use in single vehicle
roadway departure (SVRD) prevention systems. This
problem has significance due to the large number traf-
fic fatalities which occur annually due to SVRD.

Current warning systems, such as Pomerleau’s
RALPH warning system [8] use physics based
approaches, such as looking at the position of the
vehicle in the lane, or looking at the direction the
vehicle is pointing relative to the lane and calculating
a time to lane crossing (TLC) [5] metric, which is the
time it would take for the first tire of vehicle to cross a
lane boundary. While these types of systems work
well, we believe that more intelligent modeling of the
driver’s behavior could result in an increase in warn-
ing time and a decrease in false alarm rate.

Towards this end, this paper looks at two different
modeling approaches. A kinematic approach is used
as a baseline, while a memory based learning
approach is investigated for improved performance.
These models are used to predict the future lane posi-
tion of a driver, given current lane position and lateral
velocity.

II. M OTIVATION

In 1996, there were over 37,000 fatal automobile acci-
dents, in which 42,000 people were killed. While

there are many different causes of accidents, those
that involve a single vehicle are frequently caused by
driver inattention or incapacitation, leading to road-
way departure. Of the 37,000 fatal accidents in 1996,
over 21,000 were single vehicle accidents. These
21,000 accidents resulted in 22,500 fatalities, or 56%
of the total [10]. The combined cost ofall accidents is
estimated to be over $150 billion per year.

Lane departure warning systems can be used to either
help prevent these accidents, or reduce their severity
by providing advanced warning for the driver to ini-
tiate corrective action. We believe that developing
effective driver models will lead to increased reliabil-
ity and acceptability of SVRD warning systems.

III. PREVIOUSWORK

While the literature for general driver modeling goes
back over 40 years, work in modeling for SVRD pre-
vention is more recent.

The RALPH lane tracker and warning system [8] uses
TLC to determine when the driver is in danger of
crossing a lane boundary. The TLC estimate is calcu-
lated using instantaneous lane position and lateral
velocity. An allowance is made for curve-cutting
behavior, in which drivers tend to shift towards the
inside of a curve. While the system works well, the
TLC threshold has to be kept quite low (0 seconds, or
when a wheel touches a lane boundary) to keep false
alarms low. TLC also has a problem in situations
where the driver tends to drive very close to the lane
boundary. In these cases, the false alarm rate can be
high, as small perturbations in driver position can
have large effects on TLC.

The CAPC system [4] from the University of Michi-
gan Transportation Research Institute also uses a TLC
approach. However, their calculation of TLC is more
sophisticated than RALPH’s. They use upcoming road
curvature, along with vehicle dynamics to predict
TLC. While their TLC is presumably quite accurate,
they most likely would have the same problems that
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RALPH does near lane boundaries. However, quantitative
data is not available to demonstrate this.

Liu and Pentland [7] have done interesting work using
multiple Kalman Filter (KF) models to predict driver
action during distinct driver behaviors such as lane keep-
ing, overtaking, and lane changing, and a Hidden Markov
Model (HMM) to select among the KF models. Their
results indicate that in simulation, different behaviors can
be detected with approximately 90% accuracy 1.5 sec-
onds after the beginning of the maneuver.

Others have also done work on driver modeling and vehi-
cle state prediction for SVRD and drowsy driver detec-
tion, such as Knipling and Wierwille [6], who did a
comprehensive experiment using regression on different
vehicle state inputs to detect drowsiness. Isomoto
[Isomoto95] et al. look at current and future lateral dis-
placement to determine whether the driver is about to
depart the lane. Brattoli et al. [3] also look at lateral dis-
placement to detect lane departures. Batavia [2] used a
neural net to predict driver steering wheel action, to
model individual drivers and detect uncorrected devia-
tions.

IV. M ODEL DESCRIPTIONS

In our experiments, two models were tested, using data
and experimental methodology described in Section V.

Our approach to designing an SVRD warning system sep-
arates the driver model and vehicle state prediction from
the warning algorithm. This has two advantages: It is eas-
ier to test separate prediction and warning algorithms
when they are not tied together, and the effects of differ-
ing levels of complexity for each algorithm can be stud-
ied. The RALPH system implements the simplest form of
this approach. It uses kinematic prediction to predict
future vehicle state, and a warning based purely on lane
position. Figure 1 shows a block diagram of RALPH.
This paper, however, will only concentrate on experi-
ments on improving the driver model portion.

A. Kinematic Prediction

Kinematic prediction of vehicle position is a very simple
model, which works exactly the way it sounds. Given the
current vehicle state, which consists of lane position and
lateral velocity, compute what the lateral position of the
vehicle will be in t seconds, assuming constant lateral
velocity, using , wherelp’  is predicted
lane position,lp is current lane position,lv is lateral
velocity, andt is the prediction time step.

This prediction can be used as input to the TLC warning
algorithm. In TLC, the current lane position and lateral
velocity is used to determine the time remaining before
one wheel touches a lane boundary. If this time falls
below n seconds (wheren is referred to as the TLC
threshold), an alarm is sounded. Equivalently, we can use
kinematic prediction to project where we will be inn sec-
onds, and see if our predicted position violates a lane
boundary.

B. Memory-Based Learning

Instead of using kinematic prediction as input to TLC, we
tested a more complicated model, one which takes driver
actions into account to generate a more accurate predic-
tion of future lane position. This model is a simplified
memory-based learning (MBL) approach [1].

The training data input state space is current lateral posi-
tion and velocity, and the output is the actual lateral posi-
tion t seconds in the future. In this model, all the training
data is stored in a 2-dimensional array, where the indices
of the array represent a discretized state space, as depicted
in Figure 2. Currently, we use a resolution of 0.05m and
0.05m/s for lateral position and lateral velocity, respec-
tively. As the ranges of lateral velocity and position are on
the order of +/- 1m and +- 1m/s, the array size is not large.

During training, each training point is binned into the
appropriate area in the memory array. The actual future
lane position is added to a list contained in the array loca-
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Figure 1. RALPH warning system block diagram.
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Figure 2. Memory Based Learning approach. The cur-
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likely future lane position based on previous training
data.



tion. After all the training points are processed, the mean,
variance, and mode of each location is computed. To
compute the mode, we use an estimation method for con-
tinuous data described in [9].

During the recall, or testing phase, the appropriate array
element for each query point is found, based on its lateral
position and lateral velocity. The output is the mode of all
the points which were binned into that element during
training. The use of mode instead of mean is explained in
Section VI. If there are fewer than 5 sample in the bin, we
use the mean, rather than the mode. If there are no sam-
ples in the bin (i.e., our training set did not contain any
instances of this particular lateral position/velocity pair),
we use kinematic projection.

V. EXPERIMENTAL METHODOLOGY

The following sections will look at details of the available
data, and the two methods used to predict vehicle state.
The explanations are geared towards addressing the fol-
lowing two questions: 1) Given state information (where
state is lateral position and lateral velocity), how well can
we predict vehicle lateral position at some timet in the
future? 2) What combinations of lateral position and lat-
eral velocity are hard to model?

A. Data

We ran our experiments on data collected from 5 drivers
who drove Navlab 8, an Oldsmobile Silhouette, on a
round trip from Pittsburgh, PA, to Grove City, PA, which
is a total distance of approximately 90 miles of highway
driving. The full data collection effort included 20 drivers,
for a total of approximately 40 hours of data and corre-
sponding video of the road. The data was collected using
the RALPH lane tracking system, and includes informa-
tion such as lane position, lateral velocity, road curvature,
longitudinal velocity, turn signal status, and obstacle
information collated from radar sensors around the vehi-
cle. An experimenter was present with the subject during
the runs, and the subjects had not previously driven the
vehicle. The subjects were instructed to drive normally,
and make lane changes and other maneuvers as they saw
fit.

We only use data on the return trip, as we allow the driver
to become acclimated to the vehicle on the outbound trip.
While there may be a chilling effect on driver behavior
due to the presence of an experimenter and the unfamiliar
vehicle, a post-run survey indicated that the majority of
the drivers didn’t feel (or were unwilling to admit they
felt) uncomfortable during the run. The survey also indi-
cated that they didn’t believe they drove differently due to
the above confounding factors. The 5 drivers were
selected because they had different lane position means
and variances, allowing for analysis of different driving
styles.

B. Methodology

The experimental data (of the return trip only) collected
from each of the five selected subjects was partitioned
into a 10 minute training set and a 10 minute test set. The
partitioning was done such that each set had a roughly
equivalent population of curves and lane changes. Statis-
tics for these drivers are shown in Table 1, and include
lane position mean and standard deviation (over the entire
run), and number of left and right lane changes across the
training and test set. As nearly all the data was collected
on two-lane highway, it isn’t surprising that the number of
left lane changes equals the number of right.

Due to the nature of the models, only the test set was used
for the kinematic method. However, both the training and
test sets were used for the memory based learning
method, as the memory table is built using the training
set, and tested using the test set.

For both models, we used the data to predict what the lat-
eral position of the vehicle would bet seconds in the
future, wheret = 0.0 to 3.0 seconds, in 0.25 second incre-
ments. The prediction was compared to the actual lane
position datat seconds in the future, and a mean absolute
error metric was computed.

VI. RESULTSAND ANALYSIS

A. Kinematic Prediction/TLC Problems

The graph in Figure 3 shows the results of kinematic pre-
diction on 5 drivers, where the prediction time step are as
stated above. The mean of the 1-second prediction errors
0.12m. This is not a bad result. However, the raw error
rates do not matter as much as where the errors occur.

Figure 4 demonstrates the problem with kinematic predic-
tion. This graph shows 50 seconds of predicted lane posi-
tion for driver_10. The blue (or darker) graph is a
prediction which is generated by looking ahead in the
data. The red (lighter) graph is predicted lane position
generated using kinematics. In all cases, negative dis-
tances are left of lane center, and positive distances are
right of lane center. Overall, the two match well. How-
ever, the mis-matches occur at inflection points, i.e.,

Table 1: Data Set Statistics

Driver
LatPos

Mean (m)

LatPos
STDev

(m)

# Left
LC

#
Right
LC

driver_2 0.0353 0.3760 8 8

driver_4 -0.3263 0.3744 5 5

driver_10 -0.1321 0.3831 7 7

driver_14 0.0552 0.2778 4 4

driver_18 0.0364 0.4116 9 9



where the driver reverses direction. This is understand-
able, as only instantaneous lane position and lateral veloc-
ity are used. If a driver is to the left of center, and heading
towards the left, a 1st order kinematic model cannot pre-
dict that he is likely to correct his trajectory to avoid run-
ning off the road.

Predicting vehicle state during normal driving is useful.
However, an ideal model would also properly predict
future vehicle state in less common cases, such as lane
changes. Figure 5 shows the results of using kinematic
prediction to predict lane position during two consecutive
lane changes. As in Figure 4, the blue (darker) graph
shows future lane position, and the red (lighter) graph is
predicted future lane position. There is a gap in the data,
as when changing lanes, the RALPH vision system can
take up to 5-7 seconds to lock onto the new lane. During
this time, the lane position estimates are untrustworthy.
The overall match between actual and predicted future
lane position is quite good. This is understandable, as
most smooth lane changes exhibit fairly constant lateral
velocity, so kinematic prediction would do well.

The spikes in Figure 4, however, illustrate the potential
problem with using a kinematic model and position based

warning system with relatively high (>= 0.5 second) pre-
diction times. An SVRD warning system which uses this
method to predict when the vehicle would cross a lane
boundary would have high false alarms, as warnings
would be triggered in cases where the driver would nor-
mally correct his drift. This problem is aggravated by
drivers whose mean lane position is significantly away
from the lane center. A driver who normally drives to the
left of center would be allowed very little leftward drift.

B. MBL Prediction

Using the procedure described in Section V, we computed
predictions at varying time steps using the same data as
used for the kinematic experiments. Figure 6 shows pre-
diction errors over the same 5 drivers and times as Figure
3. The errors indicate that the MBL prediction is consid-
erably more accurate than kinematic prediction. For
instance, the mean of the 1-second prediction errors is
0.097m, which is better than kinematic prediction. How-
ever, as we will soon see, these numbers are somewhat
misleading.

Figure 7 shows the prediction results for 50 seconds of
driver_10. This is over the same data as in Figure 4. The
prediction is noisier, as we are currently not performing
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Figure 3. Mean absolute prediction error for 5 drivers
using kinematic prediction. The prediction times are
from 0.25s to 3.0s.
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Figure 4. Prediction results for 50 seconds of driver_10
using kinematic prediction. The blue is actual future
lane position, the red is predicted.
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Figure 5. 2 Lane changes of driver_10, predicted using
kinematics.
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Figure 6. Mean absolute prediction error for 5 drivers.
The MBL prediction times are from 0.25s to 3.0s.



any smoothing over the memory table. Some preliminary
experiments in fitting 2nd and 3rd order surfaces to the
actual future lane position mode information in the table
resulted in smoother predictions, along with improved
predictions in areas of the state space where the data was
sparse. However, there were instabilities in predictions at
the extremes of the state space, as occur during lane
changes. What is worth noting is an overall decrease in
the magnitude of the peaks that occur at the lane position
inflection points. This indicates that the table is better
able to predict when the driver is going to change his
direction of travel. This, in turn, could lead to a lower
false alarm rate. However, spikes can still occur at inflec-
tion points if previous training data cause the system to
expect a reversal when one does not actually occur in the
testing data.

Figure 8 shows the prediction results for the same lane
changes as in Figure 5. Again, the actual and predicted
future lane position match well, indicating that this
approach could model the driver in different situations,
such as lane changes.

However, looking closely at Figure 7 reveals something
interesting. The predicted future lane position occasion-
ally lags the actual future lane position. Upon closer

inspection, we realized that the MBL method was, in fact,
generating predictions that were very close to the current
lane position. In other words, if a vehicle is at positionp
at time t, its most likely position at timet+1 is alsop!
However, this lag does not appear nearly as strongly dur-
ing the lane change segments in Figure 8. The reasons for
this, and possible solutions, are discussed in the next sec-
tion.

C. MBL Analysis

To determine why predicted future lane position was sim-
ilar to current lane position, we need to look at the distri-
bution of predictions inside the memory table. What does
the distribution of future lane position look like for a
given lane position and lateral velocity?

In the following figures, all distributions are 1-second in
the future. This time step was chosen for further analysis
because current TLC based warning systems have prob-
lems when their threshold is set to 1.0 second. Figure 9
shows a simple case, where the current lane position is
0.0m, and lateral velocity is 0.0m/s. in this case, the mean
and the mode of the distribution are both close to 0.03m,
and the mode is indicated in the plot. This is not surpris-
ing, as when the vehicle is centered, with no lateral veloc-
ity, its position one second in the future should be very
close to the lane center. This particular driver prefers the
left, as shown by the denser sampling in that direction.

Figure 10 shows the 1-second future lane position of a
driver who is off to the left by 0.1 meter, and going left at

0.15m/s. The mode of his distribution is -0.15m, which
undershoots what kinematics would predict. This is most
likely because the vehicle’s lateral velocity is not constant
during the prediction interval. In this case, kinematic pre-
diction would fail, as it would predict the vehicle’s posi-
tion to be -0.25m. The spread of the distribution is due to
the differences in lateral velocity within the samples in
the memory table bin centered at -0.1m and -0.15m/s.
This indicates that lateral acceleration would be useful to

1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (Seconds)

Ve
hi

cl
e 

C
en

te
r P

os
iti

on
 (M

et
er

s)

MBL Prediction for Driver 10

Actual Future LP   
Predicted Future LP

Figure 7. Prediction results for 50 seconds of driver_10
using kinematic prediction. The blue is actual future
lane position, the red is predicted future lane position.
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the MBL method.
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include, both to increase the accuracy of kinematic pre-
diction, and to add as a 3rd dimension to the MBL table.

Finally, Figure 11 shows another problem with not
including acceleration information. This distribution is
the 1-second prediction of driver_10 when he is 0.5m to
the left of lane center, and going left at 0.3m/s. The distri-
bution is distinctly bi-modal. In about half the cases, the
vehicle is at 0.5m to the left after 1-second, which is
where he started from. This indicates a correction maneu-
ver took place to keep the vehicle from drifting off the
lane. The other times, the vehicle continued to the left,
indicating a lane change. It was this discovery which led
us to use the mode of the distribution, rather than the
mean.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a preliminary analysis of
the performance of two models - kinematic projection,
and memory based learning, using a significant amount of
real world data. Both models made use of only instanta-
neous lane position and lateral velocity. We demonstrated
the limits of kinematic projection in regards to predicting
where the driver will reverse course. We then showed how
a memory based learning approach can ameliorate this
problem, but introduces issues of its own, such as how to

properly generate a prediction when the distribution of
future lane positions given current lane position and lat-
eral velocity can be non-gaussian.

Future work will involve further statistical analysis of the
distributions in the memory table, to determine how to
best produce accurate predictions. We will also look at
using accelerometer data to improve both kinematic and
memory based predictions. It may be that incorporating
acceleration data would be enough to separate the bimo-
dal distribution in Figure 11, allowing for a Kalman Filter
to be used to generate optimal estimates. However, the
incorporation of an accelerometer means that the system
would no longer be able to rely solely on vision.
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10, lp = -0.1m, lv = -0.15m/s.
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