
ABSTRACT
We describe an optical flow based obstacle detec-
tion system for use in detecting vehicles approach-
ing the blind spot of a car on highways and city
streets. The system runs at near frame rate (8-15
frames/second) on PC hardware. We will discuss
the prediction of a camera image given an implicit
optical flow field and comparison with the actual
camera image. The advantage to this approach is
that we never explicitly calculate optical flow. We
will also present results on digitized highway
images, and video taken from Navlab 5 while driv-
ing on a Pittsburgh highway.

INTRODUCTION
Many active methods of obstacle detection such
laser, radar, and sonar may not be possible in the
Automated Highway System due to interference
between vehicles. For instance, two automated
vehicles operating near each other may have to
coordinate radar frequencies to avoid interfering
with each other. While these problems can be
solved, they present a great challenge. Therefore, it
is worthwhile to investigate completely passive
approaches, such as vision, for obstacle detection.
While vision generally cannot provide the accu-
racy, resolution, and speed of a high end laser
range finder, an effective single camera vision sys-
tem can be built cheaply and operate with rela-
tively minimal computational resources.

We have developed a system which is optimized
for detecting obstacles in the blind spot of an intel-
ligent vehicle operating on city streets and high-
ways. By blind spot, we mean the area behind and
to the left and right of the vehicle, which is nor-

mally not visible in the rear view and side view
mirrors. Generally, the blind spot is only viewable
when the driver turns his head.

The principal approach is to make certain assump-
tions about the operating environment which let us
solve the inverse perspective problem to compute a
predicted image given camera parameters and
vehicle velocity. This predicted image is then com-
pared against an actual image, and any area which
does not match our prediction is presumed to be
caused by an obstacle. One advantage is that
although we use the notion of optical flow to gener-
ate the predicted image, we never have to explicitly
calculate an optical flow field, which can be an
expensive operation. In addition, our method is
sensitive to vertical obstacles, but ignores lane
markers and shadows cast by stationary objects.
We present previous work, a system description,
experimental results, and conclusion.

PREVIOUS WORK
Many people have investigated explicitly calculat-
ing optical flow for obstacle detection. Bohrer et al
[4] looked at the idea of detecting vertical objects
using optical flow. They present a useful analysis
of the influence of camera parameter estimation
errors. De Micheli and Verri [6] detect obstacles
using vehicle angular velocity around an axis
orthogonal to the road, and generalized time to
contact. They show that motion recovery becomes
a linear problem if the image plane is orthogonal to
the road and the optical axis points along the direc-
tion of travel. Their method, like ours, seems to be
sensitive to calculated camera parameters. How-
ever, their method for calculating the angular
velocity requires horizontal texture along the verti-
cal line (in the image plane) passing through the
image plane origin. This means that it is not opti-
mal for road scenes, in which that line may consist
mostly of untextured road.

Overtaking Vehicle Detection Using Implicit Optical Flow

Parag H. Batavia Dean A. Pomerleau Charles E. Thorpe
Robotics Institute - Carnegie Mellon University
Pittsburgh, PA, USA
Keywords - Optical Flow, Vehicle Detection, Blindspot



Enkelmann [9] calculates a predicted optical flow
field (OFF) given camera parameters, focus of
expansion, and camera motion. His results, while
preliminary, showed the feasibility of using a pla-
nar parallax model to generate a predicted optical
flow field to compare to an actual flow field. We
use this approach, but get around calculating the
actual optical flow by using the predicted flow to
warp the current image, and compare images.

Graefe [10] uses a distance dependent subsampling
along with vehicle templates to look for vehicles
approaching the ego-vehicle from the rear. Their
system runs in real time on specialized hardware.

Zhao and Yuta [16] use stereo vision to predict the
image seen by the right camera given the left
image, assuming flat earth. They use inverse per-
spective mapping to transform every point in the
left image to world coordinates, and reproject them
back onto the right image, and compare against the
actual right image. They are able to pick out con-
tours of objects above the ground plane, while
rejecting stationary markings on the road.

Bertozzi and Broggi [2] use stereo vision for
generic obstacle detection, but instead of warping
the left image into the right image, they compute
the inverse perspective map of both images, and
compare those. They find objects that are not on
the ground plane, and use this to determine the free
space in front of a vehicle. They run onPaprica, a
massively parallel SIMD machine.

Dickmanns [7] uses parallel transputers to attack
obstacle detection and avoidance from different
angles. They use recursive estimation techniques to
extract obstacle vehicle state using monocular
vision, and knowledge based systems for 3-D
obstacle recognition while dealing with occlusions.
Their VaMoRs-P vehicle drives on highways at
speeds of up to 130km/h.

Betke et al [3] use a custom hard real time operat-
ing system running on a PC to look for sudden
changes in brightness over a few frames to indicate
a possible passing vehicle. This is verified using
model based template matching, which requires a
model set consisting of the front and rear views of
several different types of vehicles. To recognize

distant cars, they use a feature based approach,
looking for horizontal and vertical edges. Their
system is also sensitive to contrast changes caused
by shadows.

SYSTEM DESCRIPTION
To detect vehicles, we do the following: first, we
sample the image, perform an edge detection, and
use our planar parallax model to predict what that
edge image will look like after travelling a certain
distance. Next, we capture an image after travelling
our assumed distance, and compare it to the predic-
tion. For each edge point in the predicted image,
we verify that there is a corresponding edge point
in the actual image. If there is a match, then our
prediction (based on a flat earth assumption) is ver-
ified. Otherwise, we know that the cause of the hor-
izontal line in the predicted image was an obstacle
(i.e., above the ground plane). There are 4 compo-
nents to the system - sampling and preprocessing,
dynamic image stabilization, model-based predic-
tion, and obstacle detection. Each is described
below.

Sampling and Preprocessing
The first key to operating at near real time is to not
process the entire image. A full image of 640x480
pixels results in 9,216,000 pixels that need to be
processed each second (assuming 30 frames per
second). Because we are only interested in moni-
toring the blind spots, we do not need to process
the entire image. Instead, we specify one or two
windows (depending on the number of lanes), each
centered on the lanes surrounding the lane the vehi-
cle is in. Currently, those locations are set by hand.
However, the RALPH lane tracking system [14]
can provide lane curvature information which can
be used to determine the location of the adjacent
lanes. So, rather than processing over 9 million
pixels per image, we process two windows of
100x100 pixels. This is a total of 20,000 pixels per
frame. This number is further reduced, as we only
compute our prediction on edge pixels. By reduc-
ing the amount of data, we can handle 15 frames
per second on a 166 MHz Pentium running the
QNX real time operating system.



Two stages of preprocessing are required - smooth-
ing and edge detection. The smoothing is done by a
3x3 Gaussian window, run over each of the sam-
pling windows. The edge detection is required, as
mentioned above, as we only compute the predic-
tion on edge pixels. A standard sobel edge detec-
tion is used [11]. A prototype implementation of
this system, done by Alban Pobla [13] used the
Canny edge detector [5]. However, this required
the edge images to be computed off-line.

Dynamic Image Stabilization
The ultimate goal is generation of a predicted edge
image at timet for comparison with an actual
image taken at timet. While the model described in
the next section can generate this predicted image,
it does not take vehicle vibration into account.
When a car or van is driving down a road, it
vibrates a great deal vertically, and this needs to be
accounted for. We tried using a camcorder with
dynamic image stabilization, but it was tuned to
dampen vibrations at a much lower frequency than
those generated by a road.

Our solution is to compute 1-dimensional optic
flow (in the vertical direction). For speed and sim-
plicity, we take 10 column-wise slices out of each
image, and find the largest magnitude edge in each
slice using a 1-D sobel filter. Ideally, these edges
will correspond to features in the background of
the scene, such as a treeline or overpass. The slices
extend from the top of the image to our calculated
horizon - this usually prevents us from finding
edges due to moving vehicles. These edges are
then searched for in the next image, giving us 10
estimates of global vertical flow. A weighted aver-
age is computed, based on correlation score. This
global flow is used in adjusting the prediction
model described in the next section. During normal
operation, however, there was only a 1-2 pixel
‘bounce’ due to vehicle vibration.

Model based prediction
Once the edge images are calculated, a prediction
of the next image is generated using inverse per-
spective mapping [12]. In regular perspective pro-
jection, 2-D image coordinates are computed from
real world 3-D coordinated. The problem with the

inverse projection is that it is a mapping from R2 to

R3. This means that the solution is a ray passing
through both the image point and the focus. How-
ever, by assuming that we are travelling on a flat
road and that everything we see lies on that road,
the world coordinate of an image point is con-
strained to be the intersection of the ray with the
plane formed by the road. In other words, by fixing
the world Y coordinate to be 0, we end up trans-
forming from one 2-D plane to another. For a more
complete description, see Appendix A of [1],
which is a tech. report containing this paper’s text,
along with additional results and a detailed expla-
nation of the prediction equations.

Solving this constrained inverse perspective map-
ping tells us that given an edge pixel and the flat
earth assumption, we can calculate its coordinates
in a coordinate frame relative to the vehicle. If we
also know the vehicle velocity (which is available
via on-board GPS) and time between successive
frames, we can calculate how far the vehicle has
travelled. This means that we can compute the new
coordinates of each edge pixel in the image. This
new coordinate can be projected back into the
image plane to give us a prediction of what an
image would look like after travelling a certain dis-
tance. The global vertical flow described in the pre-
vious section is added to the prediction to account
for vehicle vibration. The prediction equations,
taken from Duda and Hart [8], are given in Appen-
dix A of [1].

This method is most sensitive along the edges of
the visual field. The predicted location of a point
directly in front of the camera does not vary much
with its height above the ground (unless the dis-
tance between images is very large). Along the
edges, however, an object at the height of an aver-
age car causes an easily detectable prediction error.
This is because when an object translates along a
given direction, the magnitude of the optical flow
field near the focus of expansion is much less than
at the edges. Therefore, the closer the approaching
vehicle is to one side of the image, the larger the
prediction error. Since we are concentrating on the
blind spot, this is an ideal sensitivity profile.



 Obstacle Detection
The predicted image that was generated in the pre-
vious section is based on the assumption that any
objects in the image lie flat on the road plane. If, in
fact, they do not lie on the road plane, they will
project to slightly different image coordinates than
predicted. It is this discrepancy that we search for.
There is a certain amount of inherent noise in this
procedure due to camera calibration error, so sim-
ply subtracting the two images does not work.
Instead, for every edge pixel in the predicted
image, we search a 3x3 neighborhood of the actual
next image for an edge pixel. If we find an edge
pixel in this area, we assume the prediction is satis-
fied - i.e, that edge point was caused by an object
(such as a shadow) on the road plane. If an edge
pixel in the predicted image isnot found in the
actual next image, we assume that it projected to
some point outside our 3x3 window, in which case
it was caused by an objectnot on the ground plane.
One problem with this search is that predictions
can be falsely satisfied if edges are very close
together. However, for detecting vehicles, this is
not too bad of a problem. Although it may seem
counter-intuitive thatnot seeing something means
it’s an obstacle, a feature which is on the ground
plane would be accounted for by our prediction,
and therefore would have been found (i.e., ‘seen’).
Any such object which is not seen is therefore
assumed to be an obstacle.

Even with the above steps, there is still some noise
present in both the prediction and actual next
images, which cause false positive and false nega-
tives to affect the results. Therefore, we make one
more assumption, which is that any vehicle that we
are looking for has horizontal edges. So, for any
prediction failure to be considered an obstacle
vehicle, it must be part of a larger set of horizon-
tally aligned prediction failures. Once we generate
the full obstacle image, we sum the image horizon-
tally, and look for peaks which exceed a preset
threshold, which depends on sampling window
size. If we find a peak, we then know that there is a
horizontal edge in the predicted image which isnot
in its predicted location in the actual image. There-
fore, it was generated by an object which is not on
the ground plane, and therefore must be a vehicle.

We assume any horizontal line whichdoes match
its prediction is caused by a shadow or other sta-
tionary feature on the ground.

EXPERIMENTS

Real World Digitized Images
Figures 1-4 show a set of images taken from a cam-
era mounted on the rear window of Navlab 5. We
drove NL5 along Interstate 279 in Pittsburgh, while
maintaining a speed of 55-65 m.p.h. We were gen-
erally driving a bit slower than traffic, so we could
get video of vehicles passing us from the rear. As
these experiments were done off-line, we pro-
cessed the entire image.

For camera calibration, we measured camera
height by hand, as it is possible to do this within a
centimeter, which was less than 1% of the actual
camera height. The pitch, however, was calibrated
using a method which relied on knowing the width
of a lane. This produced better results. However,
camera yaw was still a problem. Not wanting to
resort to an explicit calibration method like Tsai’s
method [15], we tuned the yaw by hand, until a
good match was found. For our camera setup, this
turned out to be 1.5 degrees. In the future, this can,
and should be calculated on-line.

 Figure 1 shows an image taken from NL5 with two
vehicles approaching us. Figure 2 shows that same
situation, 120 mS after Fig. 1. Figure 3 shows the
prediction of Figure 1, with the flat earth assump-
tion, overlaid over the real edge image of Figure 2.
Note that the lane marker are aligned almost pre-
cisely. However, the vehicles are not aligned. The
hill in the background isn’t matched perfectly
either, because it is above the ground plane. Figure
4 shows the final obstacle image. The histogram on
the left side is a row-sum of the image. The nearer
vehicle is easy to detect, as indicated by the spikes
in the histogram. The dashes on the top of the
images are VITC time code.

Live Video
We tested our system using the same video from
which we digitized Figs. 1-24. Everything worked
qualitatively the same using live video, as it did
with the digitized images. A few minor problems



added some noise to the system, though. First, our
digitizer hardware wasn’t capable of directly read-
ing the time code on the video tape, so we
depended on the system timer to calculate how
many frames have passed between runs. The sys-
tem timer has a resolution of 10 mS., which is high
compared to a frame time of 33 mS. Second, as we
were not running directly on Navlab 5, we didn’t
have access to the GPS provided speed, so we hard
set it at 60 m.p.h. Regardless, the results were very
encouraging, and comparable to the off-line ver-
sion. A demonstration is available on the web at
http://hoagie.ius.cs.cmu.edu:8000/~parag/research/
optic_flow/optic_flow.html.

FUTURE WORK
Future work will concentrate on using curvature
information provided by RALPH to modify the
prediction to handle curved roads. An onboard
pitch sensor can also be used to modify the model
to allow operation on varying terrain.

We are also looking at the possibility of using cus-
tom hardware to explicitly calculate the actual opti-
cal flow field over the entire image. This would
free us from the limitation of looking only at rela-
tively small image windows, and would allow us to
look for aberrant flow over the entire road scene.

0 200

Fig. 1 - Rear view road image Fig. 2 - Same image after 120 mS.

Fig. 3 - Difference Image. The red overlay
is the edge image of Fig. 2, the green over-
lay is the predicted Fig. 2.

Fig. 4 - Obstacle image. The vehicle on the
right is easily detectable.



Camera calibration is also an issue which needs to
be addressed. We will be investigating possible
methods for calibration which willnot require 40-
50 calibration points, which would be infeasible
for an AHS type application.

CONCLUSIONS
We have presented a system which solves a
restricted inverse perspective mapping problem to
warp a camera image to how it would appear after
travelling a distanced, given our planar assump-
tions. This warped image is then compared to the
actual image taken at distanced, and an obstacle
image is generated. The strengths of this approach
are that it is computationally cheap (due to not
computing an actual optical flow field), can run on
standard PCs, and is not affected by shadows and
other non-moving objects which lie in the ground
plane. The disadvantages to this approach were
discussed in the future work section. These initial
experiments show promise, and we believe that this
is a potentially viable way to detect blind-spot
impingement using a cheap, passive sensor.

ACKNOWLEDGMENTS
This material is based upon work supported in part
by a National Science Foundation Graduate
Research Fellowship, and in part by the USDOT
under Cooperative Agreement Number DTFH61-
94-X-00001 as part of the National Automated
Highway System Consortium. The authors would
also like to thank Peter Rander for his help in
explaining the problems inreally knowing what
you’re digitizing.

REFERENCES
[1] Batavia, Parag, Pomerleau, Dean, and Thorpe, Chuck,

“Detecting Overtaking Vehicles With Implicit Optical
Flow”, CMU RI Technical Report, CMU-RI-TR-97-28,
1997.

[2] Bertozzi, Massimo, and Broggi, Alberto, “Read-Time
Lane and Obstacle Detection on the GOLD System,”
Proc. Intelligent Vehicles,1996.

[3] Betke, Margrit, Haritaoglu, Esin, and Davis, Larry,
“Multiple Vehicle Detection in Hard Real-Time,”Proc.
Intelligent Vehicles,1996

[4] Bohrer, Stefan, Brauckmann, Michael, and von Seelen,
Werner, “Visual Obstacle Detection by a Geometri-
cally Simplified Optical Flow Approach,” 10th Euro-
pean Conference on Artificial Intelligence, B.
Neumann, Ed., 1992.

[5] Canny, John, “A Computational Approach to Edge
Detection,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. PAMI-8, no. 6, p.679-98.

[6] De Micheli, E., Verri, A., “ Vehicle Guidance from One
Dimensional Optical Flow,”Proc. IEEE Intelligent
Vehicles Symposium, 183-189, 1993

[7] Dickmanns, E.D., “Performance Improvements for
Autonomous Road Vehicles,”Int. Conf. on Intelligent
Autonomous Systems, 1995.

[8] Duda, Richard, and Hart, Peter,Pattern Classification
and Scene Analysis,John Wiley Publishers, New York,
1973.

[9] Enkelmann, Wilfried, “Obstacle Detection by Evalua-
tion of Optical Flow Fields from Image Sequences,”
Proc. First European Conference on Computer Vision,
O. Faugeras, Ed., 1991.

[10] Graefe, Volker, and Efenberger, Wolfgang, “A Novel
Approach for the Detection of Vehicles on Freeways
by Real-Time Vision,”Proc. Intelligent Vehicles, 1996.

[11] Horn, B.K.P., Robot Vision, MIT Press, Cambridge,
1986.

[12] Mallot, A.H., Buelthoff, J.J., and Bohrer, S., “Inverse
Perspective Mapping Simplifies Optical Flow Compu-
tation and Obstacle Detection,”Biological Cybernetics
64:177-185, 1991

[13] Pobla, Alban, “Obstacle Detection Using Optical Flow:
a Faster than Real-Time Implementation,” CMU Inter-
nal Document

[14] Pomerleau, Dean, “RALPH: Rapidly Adapting Lateral
Position Handler,”Proc. IEEE Symposium on Intelli-
gent Vehicles, 1995

[15] Tsai, Roger, “An Efficient and Accurate Camera Cali-
bration Technique for 3d Machine Vision,”Proc. IEEE
Conf. on Computer Vision and Pattern Recognition,
1986

[16] Zhao, Guo-Wei, and Yuta, Shin’ichi, “Obstacle Detec-
tion by Vision System for Autonomous Vehicle.”Proc.
Intelligent Vehicles, 31-36, 1993.


