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Abstract

ALVINN (Autonomous Land Vehicle in a Neural Net) is a Backpropagation trained neural network which is capable of autono-
mously steering a vehicle in road and highway environments. Although ALVINN is fairly robust, one of the problems with it has
been the time it takes to train. As the vehicle is capable of on-line learning, the driver has to drive the car for albes 2 min
before the network is capable of autonomous operation. One reason for this is the use of Backprop. In this report, weedescribe
original ALVINN system, and then look at three alternative training methods - Quickprop, Cascade Correlation, and Cascade 2.
We then run a series of trials using Quickprop, Cascade Correlation and Cascade2, and compare them to a BackProp baseline.
Finally, a hidden unit analysis is performed to determine what the network is learning.
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1. Introduction

ALVINN [1] (Autonomous Land Vehicle in a Neural Net) is a backprop based neural architecture
which has been used to successfully drive a car along a highway at highway speeds. The input to ALVINN is a
30x32 image taken by a camera connected to a digitizer. The output is a steering direction, which is accom-
plished by a motor connected to the steering column. One of the main concerns with ALVINN has been the
speed at which it learns to drive in new situations. While it is capable of on-line learning, the training time is
usually on the order of 2-3 minutes. The speed is influenced by many factors: the training algorithm, the train-
ing set size, the dynamic training set management, and the computational power available. In the 5 years since
the original ALVINN work was performed, not only has computational power increased, other learning meth-
ods have also been developed which may allow a speedup in learning.

The motivation for looking at this is to see whether it is viable to return to actively using ALVINN as
a supplement to the RALPH (Rapid Adaptive Lateral Position Handler) [2] lane tracking system on Navlab 5.
One of the main reasons ALVINN was replaced was the long learning time when dealing with new road condi-
tions, coupled with the requirement of driver intervention during that period. It may be possible to remove both
constraints by using faster learning algorithms, and by using RALPH to train ALVINN when road conditions
change. After RALPH trained ALVINN, the neural net’s generalization capabilities would ensure that we don’t
have simply two copies of RALPH running.

To this end, we measure the performance of three learning algorithms on learning ALVINN. The
algorithms are quickprop, cascade correlation, and cascade2. The performance of these three algorithms is
compared against a backprop baseline. In addition, we also use hidden unit analysis to determine how the net-
work learns.
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2. Previous Work

There has not been a lot of work in improving ALVINN's training time, although there has been work
on improving the robustness and accuracy of ALVINN. Radial Basis Functions (RBF’s) have been applied to
the ALVINN problem [3] with success, but no mention of training time was given. ELVIS (Eigenvectors for
Land Vehicle Image System) [4] attempted to discovley ALVINN works. It learned the eigenvectors of an
input image and corresponding steering direction using principle components analysis. New images were pro-
jected into this eigenspace to generate a steering output. ELVIS worked nearly as well as ALVINN, demon-
strating that a neural network wasn't necessary for this particular task. The MANIAC (Multiple ALVINN
Networks in Autonomous Control) [5] system improved the robustness of ALVINN by using an architecture
which combined the hidden unit outputs of multiple ALVINN networks trained for different road types. Gener-
alization improved, as the system was able to drive on a four lane road when it had only been trained on 1 and
2 lane roads.
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3. ALVINN

ALVINN is trained with a standard backprop algorithm, with certain modifications. A momentum
term is included, to escape small local minima. The flat spot problem, in which the derivative of the sigmoid
goes to zero at the boundaries, is solved by adding a constant term of 0.1 to each calculation. Because of the
large number of input units compared to hidden and output units, each layer’s initial random weights and
learning rate is divided by the fan-in of the layer that it projects to. Weight decay and a learning/momentum
rate schedule are also used.

Rather than having a single linear output indicating steering direction, the output is a 20 unit vector
which models a gaussian whose peak is the steering direction. In general, networks such as these are easier to
train than one in which there is a single linear output. A gaussian is used to allow for “sub-neuron” accuracy in
the steering direction. This means that the peak of the gaussian is allowed to fall in between two output neu-
rons - the peak of the gaussian is computed by taking a weighted centroid centered around the neuron with
highest activation.

In the on-line version of ALVINN, sophisticated training set management was done to avoid biasing
the network towards recent experience. Another problem that needed to be solved was ensuring that the net-
work would not learn a bias towards steering in one direction. Two techniques were used for this: image buff-
ering and image transformation.

Image buffering involved maintaining a buffer of previously viewed images. This was to ensure that
as new situations are encountered, older experience is not forgotten. When a new training pattern is captured,
an older one must be replaced. The system removes a pattern for which the network is already performing
well. This led to the problem that if the human driver steered incorrectly when a pattern was grabbed, it would
most likely remain in the buffer indefinitely. This was solved by adding a random replacement probability to
every pattern in the buffer. To prevent biasing the network towards left or right terms, a further constraint was
added to ensure that the mean steering direction of all the patterns in the buffer is straight ahead.

Image transformation addressed the problem that when a human drives, he rarely encounters very
unusual situations. Most likely, the driver may be a bit to the left or right of lane center, but it is rare for him to
be at more than a 5 or 6 degree angle relative to the lane. The network, however, has to be able to deal with sit-
uations like this. Therefore, a geometric transform is applied to each captured pattern, adding rotation and
translation. A pure pursuit model [10] is used to generate the correct steering direction for these artificial pat-
terns. If the required turn is outside the range the network can represent, it is not inserted into the pattern
buffer.

The original backprop that trained ALVINN (which we use as a baseline in our comparisons) used a
training buffer of 200 images, and a cross validation buffer of 50 images. Backprop would minimize the cross
validation set error in about 50-75 epochs. For the purposes of these experiments, all training is off line. We
also used a 200 element artificially generated balanced training set, along with a similarly balanced 50 element
cross validation set. After training, a final evaluation is done with an independent 50 element test set. A com-
plete explanation is given in [1].
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4. Learning Algorithms

Four different learning algorithms were chosen for investigation: backprop (as a baseline), quickprop,
Cascade Correlation, and Cascade II. The next four sections will introduce the algorithms and explain the basic
ideas behind their implementations. For a thorough explanation of each method, see [1][6][7][8]-

4.1. Backpropagation

The backpropagation algorithm is the standard baseline learning algorithm used with fully-connected,
layered, feedforward networks. The activation function on each layer is TanH, since ALVINN’s outputs range
from (-1, 1). For these experiments, the network will have 625 input units (corresponding to a 25x25 input
image), 4 hidden units (except in the case of cascor, in which the hidden units are added as needed), and 20
output units. Training is done in batch mode, using momentum and flat spot elimination. To improve the learn-
ing rate, the initial weights and learning rate of each layer is divided by the fan-in of the layer it projects to.
Another heuristic used is weight decay, which prevents weights from growing unbounded by reducing the
magnitude of a weight by a small percentage of its previous value. This is important particularly because of the
large number of weights involved. A training schedule is also used to gradually ramp up the learning rate and
momentum to a preset maximum.

4.2. Quickprop

Standard BackProp is a gradient descent algorithm which takes steps proportional to a learning rate
parameter. This is not always optimal, as it may be possible to take much larger steps, which would improve
overall learning speed. Methods like momentum and learning rate schedules are some heuristics people have
tried to achieve this effect. Scott Fahlman’s Quickprop [7] takes a different approach. Quickprop makes two
assumptions about the error surface: 1) the error vs. weight curve can be approximated by a parabola whose
arms open upwards, and 2) the required change in slope in one dimension is not affected by the simultaneous
changes in other dimensions in weight space. Using these two assumptions, the weight vector which leads to
the global minimum in this parabolic space is:

S(1)

AWt = STy 50

x Aw(t—1)

Where S(t) and S(t-1) are the value Wf at timmsdt-1. Even though this is a crude approxima-
tion, it is very fast to compute, and empirically works well. In certain cases, the weight update can tend
towards infinity. This can happen when the current slope is in the same direction as the previous slope, but
larger in magnitude. To handle this, a parampgtex introduced, which acts as a “maximum growth factor”.
The weights cannot change by more thammes the previous weight change. In most caséspn the order
of 1.75. Another problem occurs when the slope in a direction is close to zero - in this case, the weight tends
not to change, even if new conditions exist which would require it to change. This is fixed by adding another
parameterg, which is multiplied times the current slope and added to the weight update value computed by the
guadratic formula. Neither of the above two parameters are very sensitive. For most problems, there is a fairly
large range of values which work well.

4.3. Cascade-Correlation

Cascade-Correlation (Cascor) is another algorithm developed by Scott Fahiman [6]. Cascor was
developed to address two problems with backprop: step size, and the moving target problem. The step size
problem is the same as discussed in Sec. 3.2. The moving target problem is that each hidden unit in a feed-for-
ward network is trying to independently develop into a feature detector, while weights are changing around
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them, and without any cooperation or coordination. This can lead to something cateddtieéfect This is

when a set of hidden units concentrate on one problem, to the exclusion of another. All the units concentrate on
solving that problem, and when they succeed, they realize that the major source of remaining error is another
problem. The hidden units then all migrate towards solving that problem, abandoning the first. This leads to all
the units oscillating between detecting different features.

Cascor solves this problem by only allowing one hidden unit to evolve at a time, and forcing each
layer to have only one hidden unit. Each hidden unit is fully connected to the input layer, and also all the hid-
den layers before it.

The network starts with no hidden units, and no connections between the input and output layers. This
is not how cascor is normally run. However, given that we have 626 inputs (625 + 1 bias unit), and 20 outputs,
there would be 12,520 connections that would have to be calculated each epoch. For the sake of speed, these
connections were eliminated.

This network is then trained using Quickprop (which acts as a faster version of LMS when there are
no hidden layers). At some point, training will reach a plateau. If there is no significant improvement over a
certain number of epochs (specified by a patience factor), the algorithm adds a hidden unit.

When training to add a hidden unit, a set of hidden units is created, with each “candidate” unit fully
connected on the input side, but not connected at all on the output side. The input side is fully trainable. The
candidates are trained to maxim&evhich is the sum over all output units of the magnitude of the correlation
between the candidate units value and the residual error of the net. The p&tiatlofespect to the candi-
date units incoming weights can be derived similarly to the backprop derivation. Quickprop is used to perform
anascentof S as we want to maximize the correlation. Again, a patience parameter is used to determine when
candidate training is done. The unit out of the set of candidates with the highest correlation score is added to
the net. If the correlation is positive, the initial output weights are negative, which would cancel out some of
the residual error. Similarly, if the correlation is negative, the initial output weights are positive. Finally, the
outputs of the net are trained again, until either the error becomes sufficiently low, or another plateau is
reached, in which case another hidden layer will be added.

There is still the remaining problem of setting an initial condition for the first correlation cycle. If
there are no initial input to output connections to train, there will be no error for the candidate training phase to
correlate with. This was solved by setting the initial network outputs to all 0s. Therefore, the error of the net-
work will always be the negative of the desired output. The candidate phase then correlates to this error, and
negates the output weights when installing the first hidden unit.

4.4. Cascade 2

Cascade 2 is a new algorithm, also developed by Scott Fahlman [Scott Fahlman, personal communi-
cation]. The output training phase is the same as in cascor. However, candidate training is changed. In cascor,
the correlation between the candidate units’ output and all the network output units is maximized. In cascade 2,
the correlation is removed, and trainable output weights are added to the candidate. The unit is trained to min-
imize the difference between candidate output sum squared error and network residual sum squared error.
These output weights are then copied into the original network. This means that two layers need to be trained
for each candidate unit. The advantage, however, is a new candidate which better reduces the residual network
error than in cascor. This leads to fewer output epochs.
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5. Experiments

To find out how well the above algorithms work in training ALVINN, we ran a series of 50 trials of
each method. The training set was 200 artificially generated 1 and 2 lane road images. The mean steering
direction of all the images in the training set was straight ahead. The cross validation and test set were 50 pat-
terns each, drawn from the same distribution as the training set.

The trials were run by modifying publicly available code for backprop, quickprop, cascor, and
cascade2. Except for cascor and cascade?2, each trial was run until the cross validation error either plateaued, or
increased. For cascor, however, we did not run a cross validation at each epoch. This is because cascor looks
for a plateau in the training set error to determine when a new unit should be added. Therefore, there are three
termination conditions for cascor: 1) the error of the training set drops below a certain threshold, 2) a cross val-
idation is performed after evegycle (i.e., one full output training and candidate selection generation), and
stops after adding hidden units no longer affects the error, or 3) the maximum number of allowable hidden
units have been added. Therefore, we had to pick a training set error threshold below which training would be
considered done. This was done by looking at the average training set error of the completed quickprop trial,
and using that value as a beginning for the termination condition. In addition, both cascor and cascade2 were
limited to 4 new hidden units. Trials were run with fewer (3) and more (up to 6) hidden units, but there was no
improvement in performance with 5 or 6 hidden units, and a decrease in performance with only 3.

Rather than using the mean squared error of the test sets, we used the mean absolute peak difference
error. This is because we are concerned with steering direction, rather than actual output values. Therefore, the
peak of the output gaussian is important. The peak is found by taking a weighted centroid centered on the unit
with highest activation. Rather than looking at the entire output vector, we look at only a window. This is
because in the case of a fork in the road, the network output can have two peaks. The centroid of two peaks
would be somewhere in the valley between them. The window size we used was 4 units on each side of the
center. This peak was then compared to precomputed peaks for the test set.

Each algorithm has a set of parameters that needs to be adjusted. This part of training is considered to
be something of a black art, as the best values for the different parameters depend greatly on what is being
learned. We picked these parameters by running many trials for each algorithm, adjusting one parameter at a
time, until we were able find (what we hope is) the best performance. After this, we ran the 50 trials. The goal
is to compare each algorithm at its best, to avoid biasing the experiments. For backprop, the learning rate,
momentum, decay rate, and ramping rates have to be set. For these experiments we used a learning rate of
0.015, a momentum term of 0.9, and we ramped up the learning rate and momentum using a rate term of 0.05.
This means that the learning rate and momentum increase linearly over 20 epochs until they reach their maxi-
mum value (0.015 and 0.9, respectively). We also used a weight decay term of 0.0001, which means that after
each iteration, all weights were reduced by 0.01%. A constant term of 0.1 was added to each sigmoid deriva-
tive to avoid the flat spot problem.

For quickprop, we used a learning rate of 0.015, a maximum growth parameter of 1.75, and a weight
decay term of 0.0001. For cascor, the output epsilon was 4.0, the maximum growth parameter was 1.75, and
weight decay was 0.0001. The candidate epsilon was 10.0, and its maximum growth parameter was 1.75.
Additionally, we set a limit of 4 hidden layers, and stopped output training when the peak difference over the
previous 2 cycles was less than 1%. The output units had a patience value of 8 epochs, and the candidate units
were set at 4 epochs.

Cascade? has a few more parameters to set. For output training, epsilon was 6.0, max. growth was
1.75, and patience was 8. The candidates have two sets of parameters - one for the input side and one for the
output side. The input side used an epsilon of 1.0 and a max. growth of 1.75. The output side used the same
numbers. Patience was set to be the same as in cascor. In all cases, trials were run on a 133 Mhz Pentium pro-
cessor under the Linux operating system.
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6. Results
The results are shown in table 1:
Avg. Epochs/ | Seconds/ Max. Min. Avg. Peak
Epochs Second Trial Test Peak| Test Peak| Test Peak| Std. Dev.

BackProp 32 3.81 8.42 0.7000 0.380¢ 0.5488 0.0622
QuickProp 18 3.77 5.04 0.6909 0.3695 0.508f 0.0748

Cascor 163 4.27 38.30 0.9800 0.540 0.6964 0.0927
Cascade 2 152 5.85 25.96 1.331% 0.8086 1.0584 0.1168

Table 1: Final Results over 50 Trials

Of the three algorithms, quickprop was both the fastest and had the best performance, although not
significantly so. Backprop was second in time and performance, with cascade2 3rd in time but last in perfor-
mance. Cascor was the opposite, being 3rd in performance, but fourth in time.

These results were a surprise. Fahlman [7] notes up to a 10x speedup (in epochs) between quickprop
and backprop for a 10-5-10 complemented encoder. However, the backprop we used was considerably
“tweaked” to provide the best performance. As mentioned in Section 4.1., the use of momentum, sigmoid
prime offset, and a learning schedule did much to improve the learning speed of backprop. Using standard
vanilla backprop, it is easy to believe that quickprop would be 10 times faster.

What is highly unusual is the performance of cascor and cascade?2. In both the non-constructive algo-
rithms, training time was very fast, as measured in epochs. Constructive algorithms such as cascor and
cascade2 work in cycles, alternating between training outputs and training candidates. For performance, the
maximum number of epochs per cycle was set to 20 for the outputs, and 40 for the candidates. A large enough
patience had to be used so as not to stop training once a small local minimum was found. We did try using a
small patience, but that degraded performance significantly, as the hidden units never managed to “grab on”
and their correlation and fithess scores were therefore low. This use of larger patience values raiiires a
mumof 12 epochs per cycle (8 for the output, and 4 for the candidates). Over four cycles, that's 48 epochs.
This means that thigestthat could be done by cascor and cascade 2 would be to perform slightly worse than
backprop (in epochs only - both cascade and cascor had higher epochs/second rates, as the number of connec-
tions start out low, and goes up as hidden units are added). It has been suggested [Scott Fahlman, personal
communication] that these two algorithms may perform better given a single unit output representation. There-
fore, rather than having a 20 unit gaussian output, the network would have a 1 unit linear output, indicating
steering direction. It has been shown in [1] that a single unit output does not perform as well as a distributed
output.

What is interesting to note is the obvious effect that the past few years have had on computation
speed. The original ALVINN took anywhere from 2 to 3 minutes to train, under similar circumstances. It had a
larger input retina (30x32), which is about a 60% increase in the number of connections. Adding 60% to the
time for backprop results in a training time of about 13 seconds. Also, by using off-line training we are avoid-
ing the training set management that has to be done. Even so, the times are still much lower than could be
explained by that alone. To demonstrate this, we ran one trial of backprop on a Sparc IPX, which is similar to
the Sparc which was originally used. One run took 81 seconds.

Another reason for a training time of 2-3 minutes is that enough novel conditions have to be encoun-
tered while driving for the network to generalize well. This can take a couple of minutes. However, during that
time, quickprop would allow more epochs of training than backprop, although due to quickprop’s nature, there
would not be any benefit to do so.
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7. Hidden Unit Analysis

Now that we have seen how the different networks have performed, it is interested to examine why
they perform as they do. One common technique used is weight analysis. This is an especially useful technique
where the inputs have spatial organization, as road images do. Figures 1-30 show weight diagrams for all four
algorithms, and test images for the three new ones. The weight diagrams show the four sets of input->hidden
layer weights, organized in the same 25x25 pixel array as the input images are. This shows (by holding the
paper about a foot away and squinting) what features each hidden unit is sensitive to. The hidden->output
weights are also shown for each hidden unit. This tells the direction that hidden unit will vote for when it is
activated. As both one and two lane roads are used in the training set, features should be present which are
generic enough to handle both types of roads. A hidden unit analysis of the backprop network is already given
in [1], and these results are similar to the ones described below. The original weight diagrams are given in Fig-
ures 1-4. Structure is visible, but hard to detect.

Therefore, the weight diagrams are modified slightly. A histogram of the weights is calculated, and
the intensity of the top 10% of values are all converted to white. The bottom 10% are converted to black. The
remaining 80% are stretched linearly over the remaining 254 gray levels. Figures 4-8 and 15-18 show the result
of this. In these diagrams, structure is more apparent. For instance, in figure 6, which shows hidden unit 2, two
areas of activation are apparent. There are also two peaks in the hidden->output weight vector of that hidden
unit. These two peaks correspond well with the placement of the two areas of high activation in the input->hid-
den layer. One interpretation is that if the input road is shifted to the left, this hidden unit would vote for both a
turn to the left and right, while voting against going straight ahead. If the input was a straight, centered road
image, then the overall activation of this hidden unit would be to steer straight ahead. Similarly, hidden unit
one (figure 5) prefers a right turn. If a right shifted road image was presented, the hidden unit activation would
be high. However, if the road were left shifted, hidden unit one would have low activation. Again, these results
gualitatively match those of the original ALVINN.

The quickprop weights (figures 9-12, 15-18) show something very different. There is very little struc-
ture visible, and enhancing the images did not bring out much hidden structure, except in unit 1. The weights
all have very similar magnitudes, except for small areas of high activation. These areas also changed location
between different runs, whereas the backprop areas of emphasis looked similar between runs. Histograms of
both quickprop and backprop diagrams were computed, and are shown in figures 31-38. The quickprop histo-
grams are narrower and higher than the backprop ones, and also have more outliers.

This lack of structure would seem to imply poor generalization of the net. However, as was shown in
the results, quickprop actually performed slightly better than backprop, although this is not statistically signif-
icant. The question then is whether there is something intrinsically significant about the small areas of high
activation in the quickprop weights. To test this, we looked at the correlation between two variables. The first is
the activation (in each test image) of the pixel corresponding to the high magnitude weight in each hidden unit.
The second is the distance between the peak steering direction of each training pattern and the peak steering
direction of the hidden->output weight vector of the hidden unit being tested. If there is a high cotrelation
between the two events, then the network is picking up on something significant about that small area, and uses
that to generate the steering direction, with minimal input from the rest of the image.

We ran a set of experiments, computing the correlation between the intensity of the pixel correspond-
ing to the weight with the largest positive value, the largest negative value, and a random pixel, with the differ-
ence in peak steering direction, over all 200 training set patterns. The results for five trials are shown in table
two:

1. We're actually looking for a negative correlation, as an increase in pixel magnitude should cause a decrease in geak steerin
distance.
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Hid. 1 | Hid. 1 | Hid. 1 | Hid. 2 | Hid. 2 | Hid. 2 | Hid. 3 | Hid. 3 | Hid. 3 | Hid. 4 | Hid. 4 | Hid. 4
Max Min Rand.| Max Min Rand.| Max Min Rand. | Max Min Rand.
Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr

Trial1 | 0.01 -0.21| -0.09] -0.12 0.17 0.04 -0.08 0.17 0.03 -0J03 0{30 0.04

Trial2 | 0.11 0.06 -0.17( -0.06/ -0.1( -0.11 026 -0.13 -0f6 -0{28 -0{10 0.44

Trial 3| 0.16 0.02 -0.03 0.07 -0.15 0.04 -0.10 -0.07 0.06 -0j04  -001  -0.20

Trial4 | -.020 | -0.18 0.33 0.18 -0.0§ 0.03 026 -0.11 0.14 -0J07 0{00 -0.00

Trial5| -0.03 | -0.02| -0.00f -0.08 -0.11 -0.26 -0.14 0.13 -0.k9  -0{26 0{03 -0.08

Table 2: Correlation Test Results

Table 2 shows the results of 5 trials. The correlation between the maximum, minimum, and random
pixel vs. the peak steering direction are shown. The correlation values for all cases are low. In some cases, the
random pixel has a higher correlation coefficient than either the maximal or minimal pixel. All the number are
low enough however, that it is fair to say that there is no correlation in any of the three cases.

If there is no correlation, then why are there these outliers in the weight histogram? One possibility is
the approximations quickprop makes when training. There is a lot of noise in the calculations, due to the para-
bolic approximation to the second derivative of the error surface. Perhaps, this allows individual weights to
grow large. One problem with quickprop has been that weights can grow large enough to cause overflows.
Normally, weight decay takes care of this, but it may still not be enough to prevent some weights from grow-
ing. However, even these larger weights are still no where near causing floating point overflow. Most likely,
quickprop generalizes well because there is some very faint structure in the weights. The first hidden unit in
quickprop (figure 9) shows some possibility of this. There are two light areas, one on either side of the image.

The above experiment determined that there is no correlation between and individual pixel, and the
distance between the peak steering direction and the hidden units preferred steering direction. We also com-
puted the SSD between each training set output and the hidden->output weight vector for each hidden unit.
Then, we computed the correlation between the SSD for each pattern and the activation of the maximum acti-
vated, minimum activated, and a random pixel in the input->hidden weight vector. To look at the importance of
the individual pixel, we also looked at the immediate top and left neighbors of the maximal and minimal pixel.
This gives us a better idea of each hidden unit’s contribution to the total output - i.e. a hiddsuldiie
activated by the maximum pixel, but its output could be “overruled” by another hidden unit with higher (or
lower) activation. The results of this are given in tables 3-6.

Max Max Max Min Min Min Rand.
Corr, Top Left Corr. Top Left Corr.
' Corr. Corr. ' Corr. Corr. ’

Triall | -0.10 | -0.26( -0.27| -0.15 -0.13 -0.1p 0.244

Trial2 | -0.56 | -0.51 -0.50( -0.24 -0.54 -0.0y 0.2

Trial 3| -0.04 | -0.03 0.04 -0.06f  -0.09 0.2(¢ 0.11

Trial4 | -0.71 | -0.69 -0.70( -0.20 -0.23 -0.08  -0.48

Trial 5 -0.42 | -0.51 -0.45( -0.24 -0.2% -0.08 0.1p

Table 3: SSD Correlation Test Results - Hidden Unit 1
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Max Max Min Min

glo E:;( Top Left Cl\glrr; Top Left Ei?rd.
’ Corr. Corr. " | Corr. Corr. '
Trial 1 0.28 0.23 0.20 0.10 0.09 0.27 -0.55

Trial2 | 0.24 0.27 0.18 -0.200 -0.19 0.04 -0.05

Trial 3 | 0.59 0.63 0.53 0.02 0.02 0.15 0.16

Trial4 | -0.23 | -0.27| -0.30 0.08 0.12 0.17 -0.01

Trial 5| -0.12 0.07 0.00 -0.05( -0.07 0.21 0.1p

Table 4: SSD Correlation Test Results - Hidden Unit 2

Max Max Max Min Min Min Rand.
Corr. Top Left Corr. Top Left Corr,
’ Corr. Corr. " | Corr. Corr. '

Triall| -0.10 | -0.09| -0.16 0.20 0.29 0.34 -0.60

Trial2 | -0.15 | -0.12| -0.04 0.22 0.23 0.23 0.20

Trial 3| -0.02 | -0.02| -0.16( -0.00 0.01 0.01 0.49

Trial4 | -0.04 | -0.02| -0.25| -0.26/ -0.24 -0.24 0.62

Trial5| -0.02 | -0.03| -0.21 0.75 0.70Q 0.71 0.0%

Table 5: SSD Correlation Test Results - Hidden Unit 3

Max Max Max Min Min Min Rand.
Corr. Top Left Corr. Top Left Corr,
’ Corr. Corr. " | Corr. Corr. '

Trial1 | 0.58 0.61 0.52 0.68 0.64 0.64 -0.39

Trial2 | -0.09 | -0.07| -0.26/ -0.17] -0.13 -0.22 -0.36

Trial3 | -0.09 | -0.07| -0.26/ -0.14 -0.1% -0.21 -0.08

Trial4 | -0.03 | -0.03| -0.26 0.56 0.57] 0.59 -0.36

Trial5| -0.71 | -0.68| -0.71| -0.37] -0.49 -0.24 0.14

Table 6: SSD Correlation Test Results - Hidden Unit 4

What we would expect is a high negative correlation in the max pixels, a high positive correlation in
the min pixels, and a low absolute correlation for the random pixel. The results verify this in some cases. This
indicates that the individual pixéd correlated with the output of the net. However, it is not the actual pixel
itself that matters, but rather, the area that the pixel is in which is important. To demonstrate this, we looked at
the activation correlation of the pixel to the left of and immediately above the maximally and minimally acti-
vated pixel (again, when talking about maximal and minimal pixels, we mean whightin the input->hid-
den layer was appropriately activated). The correlations of these neighboring pixels is similar to the center
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pixels. This shows that what is most likely happening is that quickpriopding some structure, but that it is

very localized. What is interesting is the high correlation of the randomly selected pixel in some of the cases
(trails 1 and 4 in Table 5, for instance). The random pixel was selected to be at least 8 pixels away from either
the maximal or minimal pixel. Overall, the four tables of numbers do not paint a consistent picture. This fur-
ther reinforces the conclusion that the individual pixels do not really matter. It is the area that they are in that is
important

The other two learning algorithms, Cascor and Cascade?2 both use quickprop as their learning algo-
rithms. As expected, their weight diagrams look similar to those of quickprop. The first hidden unit in
Cascade2, however, often settles to something similar to figure 25. The structure of a 2-lane road is evident,
with the desired output being almost straight ahead. The rest of the units, however, show a similar lack of
structure. This lack of structure is not indicative of poor performance, however. Because Cascor and Cascade?2
both have cascaded inputs, the training tends to settle on the most significant feature of the input for the first
hidden unit (as is demonstrated in figure 25). Following units could possibly be learning exceptions to that fea-
ture, and so forth. Therefore, the 2nd - 4th hidden units may not show any evident structure.

What can be seen, however, is the effect each hidden unit has on the network output after it has been
added, and the output weights trained. Figures 23, 24, 29 and 30 show this. For Cascor and Cascade2, the out-
put for the two lane road image is spread across the steering directions, and doesn’t begin to come into “focus”
until after the 3rd unit is added.
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8. Conclusion

As in other tests [7][9] quickprop has shown itself to be a faster learning algorithm than backprop.
This is reinforced by the fact that learning ALVINN is not a trivial challenge. Cascor and cascade2 did not do
as well. It seems that the overhead in a constructive algorithm is not offset by better hidden unit representation
for this problem. Most likely, the problems of backprop which Cascor were meant to address, mainly the step
size and moving target effects, do not really affect ALVINN.

Although RALPH does a very good job of lane-keeping, the above experiments show that it may be
feasible to augment RALPH with a newer, faster version of ALVINN. An extended Kalman filter [11] or other
sensor fusion technique could be used to merge the results of the two processes, as both RALPH and ALVINN
can provide the confidence measures required by sensor fusion algorithms.
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9. Images

Figure 1: Hidden unit 1 weights

Figure 3: Hidden unit 3 weights Figure 4: Hidden unit 4 weights

BackProp weight diagrams
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Figure 7: Hidden unit 3 weights Figure 8: Hidden unit 4 weights

Enhanced Backprop weight diagrams
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Inputs->

Figure 9: Hidden unit 1 weights Figure 10: Hidden unit 2 weights

Hitftlen->Qutput weights Hidderi-

Epoch 10 Epach 10

Epoch 5 Epoch 5

Road Image #2

Figure 13: 2 lane road image Figure 14: 1 lane road image

QuickProp weight diagrams
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Figure 15: Hidden unit 1 weights Figure 16: Hidden unit 2 weights

Hidden->Output weights

| |
Inputs-Hidden weights Inputs-Hidden weights

Figure 17: Hidden unit 3 weights Figure 18: Hidden unit 4 weights

Enhanced QuickProp weight diagrams
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Inputs-=

Figure 19: Hidden unit 1 weights
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after Hid 2

after Hid 1

Road Image #2

Figure 23: 2 lane road image

after Hid 3
s e
after Hid 2

after Hid 1

Roa Image #121

Figure 24: 1 lane road image

CasCor weight diagrams
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Hid g

Inputs-=H

Figure 25: Hidden unit 1 weights Figure 26: Hidden unit 2 weights

Figure 28: Hidden unit 4 weights

[ —

Road nage #2 Roa Image #121

Figure 29: 2 lane road image Figure 30: 1 lane road image

Cascade?2 weight diagrams
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Histogram of input-hidden1 Histogram of input-=hiddenz

Figure 31: Hidden unit 1 Figure 32: Hidden unit 2

Histogram of input-=hidden3 Histogram of input-=hiddend

Figure 33: Hidden unit 3 Figure 34: Hidden unit 4

BackProp histograms
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Histogram of input-hidden Histogram of input-=hiddenz

Figure 35: Hidden unit 1 Figure 36: Hidden unit 2

Histogram of input-=hidden Histogram of input-=hiddend

Figure 37: Hidden unit 3 Figure 38: Hidden unit 4

QuickProp histograms
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