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Abstract

Each year, there are thousands of car accidents in the U.S. These accidents claim many

lives, and cost billions of dollars. There are many different types of accidents, including rear

end collisions, side swipes, head on collisions, collisions with static obstacles, accidents while

merging or changing lanes, and driving off the road. Mandatory seat belt usage, air bags,

lower speed limits, rumble strips, and stricter vehicle safety requirements have all helped to

reduce the number of accidents and fatalities. However, it is now possible to do more, by

using intelligent driver assistant systems.

In this thesis, I concentrate on a particular type of accident, known as Run-Off-Road

(ROR). An ROR crash occurs when a single vehicle departs the road, due to either driver inat-

tention, drowsiness, or other incapacitation, and then impacts something, such as a tree or a

house. Previous work in preventing ROR accidents mostly makes use of Lane Departure

Warning Systems, which are usually vision-based lane trackers. These systems predict when

the driver is in danger of departing the road, and trigger an alarm to warn the driver. To warn

drivers early enough so they have time to react means that often, alarms are generated in situ-

ations where there is no real danger of a crash. These alarms are called nuisance alarms.

My goal is to reduce the number of nuisance alarms, while maintaining adequate time

for the driver to respond to a truly dangerous situation. Using real world driving data, I show

that achieving this goal requires more intelligent modelling of the driver’s behavior than

current systems are capable of. This modelling comes in two forms: A novel “alarm de

model,” which takes into account road geometry and past driver behavior, and a training

rithm which tunes certain model parameters to an individual driver.

This new model reduces nuisance alarms, while maintaining adequate warning

for “loose” drivers who weave excessively. The improvement for “tighter” drivers is les

current warning systems already do a good job on them. I analyze the reason for im

warning system performance using a memory based learning framework, and show

“loose” drivers are helped more than “tight” drivers.
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Lane Departure Warning Systems 1
CHAPTER 1 Introduction

1.1 Lane Departure Warning Systems

Traffic crashes are a leading cause of fatalities in the United States. Crashes occur in

many different settings, and for many different reasons. In 1996, there were over 37,000 auto-

mobile crashes involving fatalities, in which 42,000 people were killed [69]. The combined

cost of all automobile crashes is estimated to be over $150 billion a year. A short, incomplete

listing of the different ways people manage to get into crashes include rear end collisions, side

swipes, head on collisions, collisions with static obstacles, crashes while merging or changing

lanes, and driving off the road. Until recently, efforts to prevent crashes or mitigate their

effects have been limited to approaches such as mandating seat belt use, forcing auto manu-

facturers to include air bags, lowering speed limits, and installing rumble strips. While all

these methods have had a positive impact on reducing traffic fatalities, it is now possible to do

more, through the use of advanced technology.

In this thesis, I present a system which has the potential to reduce fatalities which are

caused by a particular type of crash: Run-Off-Road (ROR), which are also known as Single

Vehicle Road Departure (SVRD). ROR crashes involve a single vehicle, which departs the

road and then impacts something such as a tree or a bridge abutment. The causes of RORs

include inattention, intoxication, incapacitation, drowsiness, and unintended steering wheel

motions [29], and result in a significant portion of U.S. traffic fatalities. It has recently been

shown that people who use cell phones while driving have crashes which are similar to those
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of drunk drivers [63]. For instance, a driver talking on a cell phone might not notice that the

vehicle is slowly drifting off the road, or may not notice an upcoming curve. A failure to prop-

erly control the vehicle in such a case could lead to an crash. 

Currently, the most common approach to preventing RORs is the use of rumble strips

on road shoulders. Rumble strips are areas of grooved pavement, usually placed about 6-15cm

[75] beyond the lane boundary. When a vehicle drifts off the road, its tire hits a rumble strip,

which vibrates the vehicle, and makes a loud noise, alerting the driver to take corrective

action. This type of system “sounds a warning” when the driver is actually in a situation which

has been pre-defined as dangerous, i.e., when the vehicle’s tire is a set distance past 

boundary. 

An alternative approach, which does not require infrastructure modification, is to 

system which can detect when the driver is in danger of departing the road, and so

alarm in time for the driver to take corrective action. These types of systems are collec

known as lane departure warning systems (LDWS). A LDWS uses sensors to look at th

These sensors track features on the road, such as lane markings, and use this inform

determine the vehicle’s position on the road. This vehicle state can then be used, in t

either warn when the vehicle is in a particular state (similar to rumble strips), or to ac

predict when the driver is in danger of departing the road, which rumble strips canno

Examples of LDWS are presented in Section 3.2. 

All the current approaches to lane departure warning systems make one key as

tion: that exploiting individual differences between drivers is not helpful. These sys

either use physics based models which ignore driver behavior, such

[10],[21],[32],[38],[62],[68], or model “generic” drivers, such as [58]. Most systems ass

that the driver behaves the same in all situations, and pay no attention to differences in

behavior due to changes in road geometry, traffic environment, and changes over time

larly, these systems assume that drivers do not change their steering input over a given

tion time. However, real drivers weave and oscillate over the road. This behavior can l

alarms in situations which are not dangerous, and only serve to annoy the driver. 
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Intuitively, most people would agree that different people drive differently. We have

all seen people weaving down the road. For some, this may indicate an incapacitation, such as

fatigue or inebriation. For others, this is simply how they drive. Figure 1-1 shows an example

of this. The “loose” driver has a larger spread in lateral position than the “tight” driver, 

cating that the “loose” driver weaves more than the “tight” driver. Some people hug on

of the road, as if afraid of getting brushed by traffic on the other side. Others, it seems,

times straddle two lanes. Some of these behaviors, such as the tendency to hug one si

road and corner-cutting, are safe expressions of personal preference. Other behaviors,

straddling two lanes or weaving wildly, can be unsafe. The difficulty in developing an a

tive lane departure warning system lies partly in adapting to safe patterns in driver beh

while not adapting to unsafe changes. Ignoring changes and differences in driver behav

lead to an increase in the number of nuisance alarms (defined below), which could

adoption of a LDWS difficult. Improving warning algorithms and alarm decision mod

(defined below) can decrease the number of nuisance alarms, increasing acceptanc

leads to my thesis statement, which is: 

The number of nuisance alarms can be reduced, while maintaining adequate

warning time, using an improved warning algorithm, alarm decision model, and individ-

ualized training. 
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Figure 1-1: Lateral position histograms for a “loose” driver (on the left), and a “tight”
driver (on the right). 
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This thesis is the first to tune LDWS performance to specific drivers, and adapt to

changes in driver behavior over time. Doing this can result in improved LDWS performance,

through the reduction of nuisance alarms, which are alarms in situations which are not danger-

ous.

1.2 Definitions and Evaluation

First, I define a warning algorithm, and its constituent parts. After that I define differ-

ence classes of alarms. 

Warning Algorithm: An algorithm which produces an alarm when the driver is in danger of a crash.
Most warning algorithms consist of two parts: a vehicle state predictor, and an alarm
decision model.

Vehicle State Predictor: A portion of a warning algorithm which takes current vehicle state, and pre-
dicts future vehicle state, usually lateral position. There are different ways to accom-
plish this, including kinematic projection, or data-centric approaches.

Alarm Decision Model: A portion of a warning algorithm which takes predicted future vehicle state
and other input, and decides whether to trigger an alarm. Other inputs can include road
state (road curvature, shoulder width), and past driver behavior. 

Ideally, warnings would only be triggered in situations that would unequivocally lead

to a crash if corrective action is not immediately taken. In other words, a warning should be

triggered at time T, where:

• A warning any later than time T would definitely be too late to prevent a crash.
• A warning at time T results in the driver successfully avoiding a crash.
• Any crash which is prevented by warning earlier than time T could also be prevented by a

later warning. The last possible warning time is preferable to limit nuisance alarms. 

That is, time T is the absolute last moment at which an alarm must be triggered to

vent a crash. It would be nice to be able to determine T using a simple rule such as if

vehicle_yaw > x, lateral_position < y, and road curvature > z, then we are at time T. Unfortu-

nately, it is not possible to define T precisely for any given situation. There are many reas

for this; uncertainty about the environment (pavement conditions, shoulder width); u

tainty about the vehicle (tire and brake conditions, slip factors); uncertainty about the 

(reaction time, ability, attentiveness, propensity to oversteer). Beyond these reasons, a
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reaching time T is quite rare, as in most cases, drivers take corrective action well before T.

Because it is impossible to determine T, drivers need to be warned earlier, to ensure they have

enough warning time to react to the situation and avoid a crash.

Therefore, a more practical definition of when it is appropriate to trigger an alarm is

required. A simple lane departure, defined as at least one tire crossing the lane boundary, is

too stringent. Many drivers, especially truck drivers, tend to touch and cross the lane boundary

quite often during normal driving. Sounding a warning in these cases would annoy the driver.

Instead, it is possible to define a “substantial lane departure”:

Substantial Lane Departure: A situation in which the vehicle is more than 50% outside the lane. This
may or may not result in a crash, depending on road conditions, vehicle conditions,
and driver ability.

Substantial lane departures, however, are also quite rare. While it is not unusu

drivers to cross the lane edge slightly, a deviation of almost a meter is uncommon, unles

are extenuating circumstances, like construction zones or debris in the road. It is also p

for lesser deviations to lead to crashes. This leads to my next definition:

ROR Situation (ROR): Any state in which any part of the vehicle departs the lane. Whether an ROR
situation leads to a crash depends on the extent of the departure, road state, and driver
reaction time and ability. 

In the driving datasets which I currently possess, there are no crashes, althoug

are many ROR situations. In fact, encountering a true ROR crash is, thankfully, very rar

not something I can wait for. However, to evaluate a warning system, there have to be p

examples of substantial lane deviations. One possibility is to use lane changes, as vehic

during lane changes can be similar to vehicle state during substantial lane departures

unintended steering input or inattention, based on the IVHS Countermeasures work [2

terms of my thesis statement, from Section 1.1, my goal is to provide as early a warn

possible for lane changes, while minimizing the occurrence of alarms when the driver 

changing lanes. This is the approach I take, which means that this thesis is partly an e

tion of lane change behavior. This is further discussed in Section 3.4.3.

Realistically, it is likely that there will be alarm triggers in states which are not 

changes. If these states are substantial excursions, then drivers may feel that it is app

for the system to trigger an alarm. As it is still unclear when drivers will or will not cons
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an alarm appropriate, I present a set of definitions for true, false, and nuisance alarms. If the

alarm triggers in a situation which drivers deem normal, they will feel it is a nuisance alarm.

Driver perception is therefore very important in classifying an alarm. The definitions of a sys-

tem designer are irrelevant if the end user does not agree with them.

Hadden et al. [29] have done a simulation study of lane departure countermeasure

effectiveness. During analysis of the results, they put forth 6 possible outcomes of a counter-

measure intervention. I use this framework, slightly modified, to present the following defini-

tions (Note, when I refer to the driver, I mean a normal driver who is not incapacitated and is

paying attention to the road):

Safe True Alarm: An alarm triggered in time to prevent a situation where the driver, in hindsight, rec-
ognizes that his actions could have resulted in a crash.

Late True Alarm: An alarm triggered before a crash, but too late for the driver to take corrective
action.

Safe Nuisance Alarm: An alarm which triggers in a situation where the driver, in hindsight, does not
believe that his actions could have resulted in an ROR crash. Besides the alarm itself,
there is no other consequence. 

Unsafe Nuisance Alarm: An alarm which triggers in a situation where the driver, in hindsight, does
not believe that his actions could have resulted in an ROR crash. In this case, the
alarm causes a reaction in the driver which leads to a crash. 

False Negative: A situation in which the driver, in hindsight, recognizes that his actions could have
resulted in an ROR crash, yet no alarm triggered.

True Negative: A situation in which the driver, in hindsight, does not believe his actions would result
in an ROR crash, and no alarm triggered. This is by far the most common outcome.

Burgett [11] mentions another category of nuisance alarms, although I have altered his

definition to make it more applicable to this domain:

False Alarm: A nuisance alarm caused by either system perceptual error or an error in the vehicle
state prediction or alarm decision model.

The above definitions depend on user perception. The driver data I use in this thesis

does not have user reaction to events, so it is difficult to apply the above definitions directly.

Therefore, I modify the above definitions for an “offline” environment, when working w

pre-recorded data, without access to the subject. These modifications are discussed in

3.4.3, and include using lane changes as true alarms, and treating alarms in all no

change situations as nuisance alarms. 
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One question which arises, is how much of an increase in warning time and decrease

in nuisance alarm rate is achievable with a modified LDWS? These two issues are very

closely related, and improving one generally has a negative effect on the other, as Section

3.4.3.5 shows. System efficiency can be described as being positively correlated with warning

time, and negatively correlated with the number of nuisance alarms.

Current systems generally provide enough warning time for drivers to react to an

alarm. However, they can suffer from high nuisance alarm rates, particularly for drivers who

weave a lot, and frequently drive near or slightly over the lane boundary, which is demon-

strated in Section 3.5.3. I show that using an alarm decision model which accounts for more

complicated driver behaviors than current systems account for, combined with optimizing the

model for a particular driver, can do a better job of predicting dangerous lane departures than

standard TLC. This, when applied to a LDWS, can result in warning times which are similar

to current systems, with a lower nuisance alarm rate.   

1.3 Previous Work

In this thesis, I develop an adaptive warning algorithm which results in a lower nui-

sance alarm rate. In this section, I present an overview of previous work in both driver model-

ling and lane departure warning system design. I go into detail about two popular warning

methods, Roadside Rumble Strips and TLC, in Section 3.2, where I evaluate their perfor-

mance using real world data. 

1.3.1 Driver Modelling

This section presents previous work in general driver modelling. While this is not the

focus of my thesis, this area is large enough and related enough that it is worth briefly review-

ing.
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One of the earliest works, by Pipes [59], modeled the driver as a gain and a time delay,

and modeled the vehicle lateral position as an integration of steering wheel angle. Over the

next few decades, that work was expanded upon, as the model of the driver became more

complicated and attempted to take into account evidence provided by studies of driver behav-

ior. 

Weirwille [73], who has been active in this field for many years, presented an early

model which took into account past lateral displacement, future roadway curvature, and driver

vantage point. This work showed that information on the upcoming road curvature helps to

eliminate the effects of perceptual and reaction lag. 

Crossman and Szostak [17] proposed a three level model which combined open loop

control of vehicle curvature given upcoming road information, with closed loops around lat-

eral position and lateral velocity. McRuer et al. [46] added a “precognitive” open loop co

module, which was used to establish the driver on an appropriate trajectory for lane ch

and obstacle avoidance maneuvers. Baxter and Harrison [7] take a previous linear 

model, and add a non-linear hysteresis element, in an attempt to model the oscillations 

ers driving on straight roads. Rather than raw vehicle state, they use aim-point error, w

the angle between the vehicle heading and the lane centerline at a certain lookahead d

Others who have contributed to this field includ

[1],[5],[6],[7],[12],[13],[19],[20],[22],[23],[26],[28],[30],[36],[37],[42],[45],[64],[66].

The main assumption in control theoretic approaches to driver modelling is

humans, and the vehicles that they control, can be adequately simulated using 2nd ord

tems. Stochastic and non-linear effects, such as crosswind response, cannot be mode

using these approaches. Furthermore, it becomes very difficult to take into account en

mental effects such as the presence of other vehicles. One area where these approac

worked well is in car following, as shown by Bekey [8], Chandler [15], Ioannou [31], 

Naab [49].

Work in automated vehicle control often makes use of driver models. Neural netw

are popular in this domain. CMU’s NavLab, which used the ALVINN road follower [61] u

a neural net to learn to control a vehicle based on observing a driver, which was com
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with a pure pursuit steering model. MacAdam [44], Mecklenburg [47], Cheng [16] and

Neusser [52] have also used neural nets to control vehicles. While generally successful in con-

trolling vehicles, only [61] provides any explanation of what the network was learning.

Nechyba [51] and Deng [18] have both investigated the general problem of human

skill modelling, and have applied their methods to identifying drivers. Nechyba used a neural

net to map vehicle and road state input to steering output, and then validates the models using

an HMM based similarity metric that looks at the cross-probability of a sequence of observa-

tions generated by both training data, and the model, fed back upon itself. Deng uses an effi-

cient memory based learning approach to compute the log-likelihood of observations, i.e.,

computing the probability that a given observation (which, in this case, is a PCA-condensed

timeseries of vehicle state variables and driver steering command) is likely to be generated by

a given driver. While both approaches do well at classifying drivers (based on a subset of the

Navlab 8 data described in Section 2.3), they are more properly regarded as system identifica-

tion methods, rather than explicit driver models. Neither is suitable for on-line prediction or

evaluation of driver behavior as part of a lane departure warning system. Zhao [76] has also

done work in tracking cars using Kalman filters, which makes use of driver models. 

1.3.2 Warning Systems

The Daisy system, developed by Feraric and Onken [54], uses multiple Fuzzy-ART

models for different low level situations such as lane changes, passing, cruising, etc., and

attempts to learn an individual driver’s acceptable levels of Time to Lane Crossing (TLC

Time to Collision (TTC). A separate model was used to determine what the driver’s 

would be in a given situation, to select an appropriate low level model. Heuristic appro

have also been used, where rules are applied to state variables of the type: If lateral_position

> threshold, then sound alarm, such as the work by Isomoto [32]. Pilutti [58] also used a r

based approach, where the thresholds used by his rules were learned using fuzzy logic

Takahashi [70] has done some interesting work in developing individualized mod

manual gear shifting for engine braking, while driving downhill. Schumann [65] and T

[72] have developed warning systems which use active intervention, nudging the st

wheel in the proper direction to avoid a lane departure. There has also been work in pre
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the effectiveness of warning systems, by Goodrich [25], Burgett [11] and Pape et al. [55] [56].

A great deal of attention is paid to individual performance and ability in the drowsy driver lit-

erature, by Knipling [35], Seigmund [67] and others. There have also been studies to deter-

mine where we look when we drive, by Land [39] [40].

With few exceptions, the previous work lacks the following: Performance evaluation

on significant amounts of real data, explanations of what is being learned, and what, if any,

differences there are between individual drivers which could be exploited by a lane departure

warning algorithm. Accomplishing the goal of my thesis requires me to address these issues.

1.4 Thesis Overview

My goal in this thesis is to reduce nuisance alarms by developing a better model for

predicting dangerous lane departures, using lane changes as an example of such an event.

Another goal is to determine if adapting such a model to an individual driver improves warn-

ing system performance. 

In Chapter 2, I describe two data collection studies which provided all the data I use in

this thesis. The first was begun in 1997, and involved 20 subjects driving Navlab 8 (a mini-

van with obstacle and lane detection sensors) on a 100 mile round trip. The data collection

took about seven months to complete, and was controlled. In all cases, the same vehicle was

used, the same route was taken, and an experimenter was present with the subject. Video

information of the driver’s view was also collected, along with state information such a

eral position, and the status of the various obstacle sensors on Navlab. Although the con

nature of this study was an advantage in some ways, I was still uncertain whether a mo

ural setting would provide data which showed greater individual variance. Also, the am

of data per driver was relatively small -- about 1 hour -- which made it difficult to tes

learning algorithms I wanted to. Therefore, I did a second data study. 

The second study was designed to eliminate some of the confounding factors 

Navlab 8 study. This “naturalistic” data collection effort used a portable AutoTrak lane tra

which was installed in subject’s personal vehicles. I hoped that this would capture more

ral driving behavior, as the subjects would be driving familiar vehicles without an ex
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menter present. I selected subjects who were going on long trips (usually greater than 500

miles round trip). Nine subjects volunteered. These nine subjects provided 71 hours of data.

Problems in installation and with the data collection system meant that not all of the data

which was collected was usable. In the end about 20 hours of clean high quality data were col-

lected, from 5 different drivers. 

I use this data to demonstrate three results, which are presented in Chapter 3. The first

is an evaluation of current warning system algorithms on realistic data. Most of the work in

this area has used driving simulator data, due to the lack of real world data. I evaluate three

methods: Roadside Rumble Strips, Time To Lane Crossing (TLC), and AutoTrak, which uses

a Future Offset Distance algorithm with hand-tuned parameters. Roadside rumble strips has a

low nuisance alarm rate, but a low warning time. Conversely, TLC, as it is normally imple-

mented, has a higher nuisance alarm rate than roadside rumble strips, with a high warning

time. The difference in nuisance alarm rate and warning time between roadside rumble strips

and TLC depends on the TLC lookahead timestep. AutoTrak has a lower nuisance alarm rate

than TLC, with a higher warning time than roadside rumble strips.

The second and third results are presented concurrently. The second result is the devel-

opment of a more sophisticated warning algorithm and alarm decision model, which is a

model that takes future vehicle state and current road state as input, and outputs whether an

alarm needs to be triggered. This new alarm decision model takes into account driver behavior

such as curve cutting and changes over time, and when used in a Future Offset Distance

(FOD) warning algorithm, results in a lower nuisance alarm rate, with a minimal impact on

warning onset time. Finally, I present the third result on training FOD parameters for individ-

ual drivers. I show that while the benefits of training are debatable for many drivers, drivers

who weave a lot, either due to ability, road conditions, vehicle type, or weather (who might be

considered “loose” drivers), can be helped by training a driver-specific model.

In Chapter 4, I describe a new way to model and analyze driver behavior. I use a

nique called memory based learning (MBL), which is similar to k-nearest neighbor. W

most of the previous work analyzes drivers in term of model fits and gross statistics, 

allows me to look at subtle differences in driver behavior over different parts of the 

space. In this case, the state space is lateral position and lateral velocity. Training the
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table involves iterating over data, and binning it based on its state. When a particular state is

binned, the actual future lane position (after some lookahead time) is binned. Therefore, we

can start asking questions like “When the driver is 10cm to the left, and drifting left at 10

where is he/she likely to be two seconds later?”. There are a number of interesting ob

tions which come out of this type of analysis. One is that drivers do not always behave a

ing to simple kinematic predictions. Most current warning algorithms (including TLC 

FOD) assume that drivers will not change their steering wheel position over the pred

time step. An MBL analysis shows that as one looks further into the future, the actual 

lane position in a given state can become bimodal, with one mode indicating a corr

action, and another mode indicating a lane departure or lane change. This bimodality p

a fundamental limitation to warning system performance when using only lateral positio

lateral velocity.

I also use probability and information theory to answer why “loose” drivers are he

by individualized training, and why average drivers derive little or no benefit. I show tha

training methodology I use changes the shape of alarm/no alarm decision boundary in

way that parts of the state space which do not necessarily lead to lane changes, bu

“loose” drivers occupy more frequently than “tight” drivers, are re-classified as “no trig

states. This reduces the overall number of alarm triggers, while minimally affecting the 

ing time for true excursions. Finally, I use entropy measures to show that for certain dr

the information content in their driving data is lower, and therefore suffer from higher pr

tion uncertainty than other drivers, which limits the effectiveness of warning algorithms.

Lastly, Chapter 5 presents a summary of the contributions of this thesis, whic

methodologies for real world data collection, along with the data collection itself, the F

Warning Distance (FOD) warning algorithm, results in individualized driver modelling 

training, and a low-level analysis of the results using a Memory Based Learning (M

framework. After that, I present directions for future research. In particular, I discuss the

lems created by a lack of data, and suggest the conditions for further data collection 

and field evaluations.
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CHAPTER 2 Data Collection

2.1 Introduction

One factor differentiating my thesis from previous lane departure warning work is my

use of a large amount of real world driving data. To this end, I have collected over 100 hours

of data from 29 different drivers. This data was collected in two different collection efforts,

which made use of two different lane tracking systems, with similar performance. In the first

study, the subject drove Navlab 8, a mini-van outfitted with a lane tracker. My second study

effort involved installing a portable lane tracker in the subject’s vehicle. 

Most previous efforts on driver modeling and lane departure prevention use

which was collected by having subjects drive simulators [9], [40], [50], [58], [71], [74]. Si

lator data has certain advantages: 1) it is free of sensor noise, 2) simulator studies are

ble to controlled situations such as road and weather condition and traffic density, allowi

the observation of only the desired effects, 3) subjects can be asked to perform the exp

again, if needed, as most simulator studies are of relatively short (less than 2 hours) du

and 4) drivers can be placed in dangerous situations.

In contrast, real world studies in this area usually suffer from (unmodeled, corre

and non-gaussian) sensor noise, and uncontrolled effects due to weather, road, and tra

ditions. They are also generally one-shot efforts. If a driver has volunteered to have da
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lected over a 10 hour trip, he/she will not be willing to go on the trip again if an error occurred

in data collection. Also, drivers can not be placed in dangerous situations, such as those which

would lead to roadway departures.

Despite these limitations, real world data has many advantages. The primary advan-

tage is that if the goal of driver modeling and lane departure prevention work is to build sys-

tems which can work in the real world and prevent single vehicle roadway departures, then the

models and algorithms used must be validated on real world data. Most of the current work

based on simulation studies, however, leaves real world implementation as a future problem to

be solved. In doing so, most researchers do not convincingly demonstrate that their methods

are applicable in the real world. 

Other advantages of real world data are mainly answers to problems with simulators.

The fidelity of most driving simulators leaves something to be desired. While there are some

high fidelity simulators in existence [29], the majority are fixed based with less than a 180

degrees field of view. The “feel” of driving these types of simulators is unlike driving a 

car. Therefore, the data collected from them, particularly when related to human contro

egy, is suspect. 

This chapter discuses the two data collection studies, including the lane trackers 

were used, the methodology, and an overview of the resulting data. This data forms th

for the lane departure prevention work which I present in upcoming chapters. 

2.2 Lane Trackers

I use two lane trackers to collect the data used in this thesis. A lane tracker is a s

which consists of a computer and a sensor which can determine the state of the vehicle

road. These systems provide information such as vehicle lateral position and velocity

width, road curvature, and lane marker types (solid or dashed). 

Lane trackers can use sensors such as forward or downward looking cameras,

or carrier phase GPS combined with accurate road maps. The lane trackers which I 

based on a forward looking camera mounted on the vehicle’s windshield, looking out 

road ahead. In such systems, the image of the road is analyzed, and the lane markers
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useful features are detected. The lane tracker uses the position and orientation of these fea-

tures to determine the vehicle and road states. This information can then be used by a lane

departure warning algorithm to warn drivers who are in danger of running off the road.

The first lane tracker, the Rapid Adaptive Lateral Position Handler (RALPH) [62] was

used for the Navlab 8 data collection described in Section 2.3. The second system used,

AutoTrak, is a more recent version of RALPH optimized for lane departure warning, and was

used in the naturalistic data collection effort. The following sections describe the data collec-

tion efforts, including the lane trackers used, the methodology, and the resulting data. 

2.3 Navlab 8 Data

The goal of this study was to collect driving performance data to evaluate differences

in ability and style, while controlling the environment as much as possible, thereby eliminat-

ing any confounding influence. Subjects were asked to drive Navlab 8, which is shown in Fig-

ure 2-1. Navlab 8 is an Oldsmobile Silhouette mini-van outfitted with a RALPH lane tracking

system, along with various other sensors such as radar, laser, and GPS.

Figure 2-1: Navlab 8
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The primary reason for using Navlab 8 for this study was that at the time, I did not

have a portable lane tracker to install in a subject’s vehicle. A secondary reason was to

that all subjects would be driving the same automobile to eliminate any variability due t

ferences in vehicle dynamics or control.

2.3.1 RALPH Lane Tracker

The RALPH system was originally developed for use as a vision based lane track

automated lateral control of a vehicle. The system runs on Pentium class PCs, and int

to a camera to track the lane boundaries and provide vehicle state information such as

position, vehicle yaw, and upcoming road curvature. A partial state output is given in Ta

1.

State Variable Range Units LSB

Time of Output 0-860,400 seconds 1 msec.

System Confidence 0 - 1 n/a 0.01

Lateral Position +/- 10 meters 0.01

Average Road Curvature. +/- 0.1 1/m 0.00001

Vehicle Curvature +/- 0.1 1/m 0.00001

Vehicle Yaw +/- 4.0 degrees 0.33

Vehicle Yaw Rate +/- 30 deg/sec 0.01

Lane Width 2.5 - 5 meters 0.04

Steering Position encoder counts / steering wheel motion

Turn Signal State left or right turn signal active

Estimated Lane left, center, or right lane 

Time to Lane Crossing (TLC) -1.0 - 6.0 seconds 0.03

RALPH Event lane departure event flag

GPS X Coordinate +/- 20M meters 0.01

GPS Y Coordinate +/- 20M meters 0.01

TABLE 2-1 RALPH State Output
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2.3.1.1 Operation

RALPH operates as follows (Refer to Figure 2-2 for details). The system looks out

between 30 and 120m ahead, and a trapezoid covering this area in the image is sampled. The

image inside the trapezoid is geometrically warped to produce an overhead view. This trans-

formation causes lane markings on a straight road to become parallel. 

A one-dimensional vertical histogram of the image intensity in the transformed area is

then computed. This histogram has spikes that designate the location of the bright lane mark-

ings. The lane marking positions are computed using the location of the spikes. Upcoming

road curvature is then computed using template matching. Templates of the histograms pro-

duced by various road curvatures are stored, and compared against the actual histogram. The

closest match indicates the curvature of the road. 

In Figure 2-2, the trapezoidal area indicates the area being sampled. After the lane

markings and curvature are found, they are marked on the image as the dark dots superim-

posed over the lane markings. The lighter dashed line between the lane markings indicates

Figure 2-2: RALPH Screen Shot
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where RALPH thinks the center of the lane is. The menu in the lower half of the screen is used

as part of the automated control system, and allows the driver to change settings such as vehi-

cle speed and following distance, and to initiate actions such as lane changes.

2.3.1.2 Algorithm Characteristics

The lateral position, lateral velocity, and upcoming road curvature estimates generated

by RALPH were all accurate enough for active control of NavLab at highway speeds. How-

ever, the necessity of using RALPH to control NavLab led to design decisions which reduced

the potential accuracy of the lateral position estimates. The primary such decision was to trade

off lateral position accuracy for upcoming road curvature accuracy (which is very important

when driving at highway speeds) by looking out up to 120m away. This improves curvature

accuracy; 100m of lane features over which to compute curvature provides more data than

would 20m. However, at 120m away in the image, the lane markings are harder to detect and

localize, resulting in reduced lateral position accuracy. 

RALPH also provides a great deal of information, more than is listed in Table 2-1.

Computing this information requires time, and thus, has the overall effect of reducing the pro-

cessing speed of the whole system. Regardless, RALPH was able to operate at up to 25Hz,

and provide state output at up to 25Hz. However, system constraints dictated that data be cap-

tured at around 15 Hz. 

2.3.2 Methodology

Before beginning the study, I needed permission from the Carnegie Mellon Human

Use Review Panel (HURP), which oversees any experiments which make use of human sub-

jects. This involved writing a proposal, provided in Appendix B detailing the goals and meth-

odology of the study, along with any potential benefit or harm to the subject. The HURP

committee then reviewed this proposal, and made a decision regarding whether to allow the

experiment to take place. This study was considered fairly innocuous, and therefore, permis-

sion was rapidly granted. Subject recruiting then began, through the use of posters, newsgroup

postings, and personal request. 
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As the goal of the study was to collect data on driving behavior, the experiment

involved having the subject drive Navlab 8 from Carnegie Mellon University in Pittsburgh,

PA, to Grove City, PA, which is about 50 miles north of Pittsburgh. I was present in Navlab

with all subjects. I instructed the subjects to drive as they normally would, to drive safely, and

to ignore the presence of the experimenter as much as possible. The only explicit instruction I

gave them was to use the turn signal while changing lanes, as the turn signal is instrumented;

this allowed automatic marking of data collected during lane changes. While the subjects were

driving on the highway, RALPH was active, recording vehicle state information and driver

action. The subjects were not told what was being recorded -- only that data on their driving

was being stored. After returning to CMU, I provided subjects with an information sheet

detailing the purpose of the study, and asked them to fill out a survey regarding their experi-

ences. This survey asks the drivers to rate themselves on their driving performance, and their

level of comfort during the study. The results of this survey are presented in Appendix D.

2.3.3 Data Characteristics

This data collection effort took place over seven months, from January to August,

1998. Data was collected on 20 drivers. This section provides statistics on the drivers, along

with the data collected, and ends with a discussion of possible confounding effects which may

have an impact on the “naturalness” of the observed behavior, and provides a motivat

the follow-on study. 

2.3.3.1 Subject Characteristics

Twenty subjects participated in this study. All subjects were CMU students or em

ees. This constraint was insurance related, as the subjects would be driving a CMU-

vehicle. Half the subjects were graduate students in the Robotics Institute; the other ha

staff members and faculty. However, only two of the subjects were not members (eithe

ulty, student, or staff) of the Robotics Institute. Eight of the 20 drivers were female. The

jects ranged in age from 23 to 43. 
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2.3.3.2 Confounding Factors

There are a number of confounding factors which could affect the data. This study

measured how people drove an unfamiliar vehicle on a highway while in the presence of a

potentially intimidating experimenter. The experimental vehicle, Navlab 8, is a mini-van.

Only a small percentage of the subjects had any experience driving a mini-van or other large

vehicle. Finally, the subjects knew that they were being monitored, and that their performance

would be analyzed. This could have lead to more alert, careful driving than might otherwise

have occurred. 

These effects are difficult to measure in an uncontrolled setting. Properly gauging their

contributions to the performance of the subjects would require experiments in which vehicle

type and experimenter presence are controlled. Practical considerations did not allow me to

perform these experiments. However, it is not unreasonable to suspect that the effects men-

tioned above did have an influence. Therefore, the data does not necessarily reflect naturalis-

tic driving behavior. These issues are further discussed in Appendix D. Section 2.4 describes a

study in which data on natural driving behavior was collected.

While the data may not reflect the subject’s natural driving behavior, it does show

ferences in performance. The controlled nature of the experiments implies that differen

lane keeping ability are due to real differences between drivers, rather than artifacts in

by differences between vehicles or lane tracker calibration. 

Another problem with the above data was that, despite the fact that 20 subjects p

pated, there was not enough data! The training and analysis methods which are expl

Chapter 4 require more data per individual driver than was available. One to two hours o

per driver did not provide enough variability to learn driver response in different situat

The difference in variability by amount of data is shown in Figure 4-3 on page 77. For 

reasons, I undertook another study, with the goal of capturing long term natural behavio
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2.4 Naturalistic Data

The goal of second study was to record a large amount (> 5 hours per driver) of natural

driving behavior. The motivation was two-fold: To provide more data per driver for my train-

ing algorithm, and to reduce or eliminate the confounding factors which may have influenced

driver behavior in the previous study. This study resulted in over 70 hours of data on natural

driving behavior. This section describes the lane tracker used, the characteristics of the sub-

jects, and the resulting data.

2.4.1 AutoTrak Lane Tracker

AutoTrak was developed by Pomerleau to address some of the issues regarding

RALPH which were brought up in Section 2.3.1.2. AutoTrak is significantly smaller and eas-

ier to install in a vehicle than RALPH. The interface is a converted radar detector unit. The

following sections detail AutoTrak’s operation and characteristics. The AutoTrak inte

unit and computing box are shown in Figure 2-3, and the state output is given in Table 2

2.4.1.1 Operation

AutoTrak is basically similar to RALPH, in that it uses a camera to look out at

road, and uses lane features to estimate lateral position, lateral velocity, and other stat

mation. Installing AutoTrak is simple. Whereas RALPH is contained in a full-sized PC

entire AutoTrak computing box is 6" x 6" x 6", and is composed of PC-104 boards. An o

shelf radar detector has been modified, allowing the use of its buttons to control Auto

and the use of its LED panel to display information such as lateral position or menu cho

Installing AutoTrak involves attaching the radar interface unit to the windshi

directly below the rear-view mirror. The interface connects via a cable to the computing

which is usually placed on the floor of the rear of the vehicle. The system is capable o

calibration. This involves driving on a stretch of relatively straight road, where the syst

able to determine its camera parameters, such as pitch, over a 30 second calibration
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Interface Unit

Camera

Figure 2-3: AutoTrak interface unit and computing box installed in a subject’s vehicle.

Computing Box
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The system also continuously refines its calibration during normal operation. This ease of

installation allowed me to install the system in subjects’ personal vehicles, as is descri

Section 2.4.2. 

2.4.1.2 Algorithm Characteristics

AutoTrak trades off curvature accuracy for lateral position accuracy. While this tr

off prevents AutoTrak from controlling an autonomous vehicle, the road curvature estim

provided are more than adequate for segmenting roads into curves of varying degree. T

cycle rate allows data to be collected at up to 60 Hz, although in this case, data was co

at only 30 Hz due to storage constraints.   

2.4.2 Methodology

As in the Navlab 8 data study, I had to obtain permission from the university hu

use review panel before beginning the data collection. Permission was again rapidly g

as in this case, the installation of AutoTrak would provide no distraction or risk to the d

State Variable Range Units LSB

Time 0-86,400 seconds 0.01

Lateral Offset +/-250 centimeters 2.0

Lateral Velocity +/-250 centimeters/s 2.0

Road Curvature +/-0.008 1/meters .000063

Lane Width 260-480 centimeters 1.0

Estimated Lane left, center, or right lane.

Offset Confidence 0-100 n/a 1

Turn Signal left or right turn signal active

Velocity 0-50 meters/s 0.2

Heading 0-360 degrees 0.1

GPS Latitude 0-90 degrees .000001

GPS Longitude +/-180 degrees .000001

TABLE 2-2 AutoTrak State Output
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because the system would be operating in pure data collection mode. For safety, as well as

methodological reasons, all audible and graphical output was turned off. In normal operation,

AutoTrak will sound an audible alarm when drivers cross over a solid lane boundary. As of

yet, there have been no studies done on the effect such a warning would have on drivers. It is

possible, although perhaps unlikely, that such an active intervention could startle them, caus-

ing them to react inappropriately. In addition, this data collection effort was conducted to col-

lect examples of natural driving behavior. Having an active warning and graphical depiction

of lane position could affect the actions of the driver. Anecdotally, there is evidence that hav-

ing the graphical lane position indicator active causes drivers to center themselves more accu-

rately when driving an unfamiliar vehicle.

After I received permission to begin, I recruited subjects via e-mail and newsgroup

postings. The majority of the collection occurred over the Thanksgiving and Christmas

breaks, as many people go on long trips during these holidays. The study required the subjects

to bring their car to CMU, where I installed the AutoTrak system. After installation, each sub-

ject and I went for a short drive to calibrate the system and familiarize the driver with

AutoTrak. During this period, the audible and graphical outputs of AutoTrak were left on, to

verify calibration. After calibration was completed, the audible and graphical outputs were

turned off. The system was put into data collection mode, in which it would record data when-

ever the road conditions allowed it to generate a valid estimate of vehicle state. Subject

involvement with the system included only inserting the power cord into the cigarette lighter

before a drive. Many of the subject vehicles had cigarette lighters which deactivated when the

car was off, meaning that the subject did not have to do anything.

When the subjects returned to CMU, AutoTrak was removed, and the subjects were

each paid $50 for their involvement in the study. The subjects were then told (if they indicated

interest) what had been recorded, and the purpose of the study.
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2.4.3 Data Characteristics

This data collection effort took approximately 3 months to complete, from November

1998 to January, 1999. The study resulted in data being collected on nine drivers, resulting in

about 70 hours of data collected. This section provides statistics on the subjects and ends with

a discussion of possible confounding effects which may have an impact on the integrity of the

data. 

2.4.3.1 Subject Characteristics

Nine subjects volunteered for this study. As in the previous experiment, insurance con-

cerns dictated that they all be members of the CMU community. Three of the subjects were

female. The subjects ranged in age from 25 to 43. Six of the subjects were graduate students at

CMU. 

2.4.3.2 Confounding Factors

The main confounding factor during this study was a general AutoTrak installation

error which was noticed after the data collection was complete. This error was discovered

after an attempt to measure the lateral position and lane width estimate accuracy of AutoTrak.

While the curvature accuracy is difficult to measure, it is possible to measure lateral

position accuracy. To do this, I conducted an experiment with AutoTrak in the parking lot of

the Pittsburgh Zoo. I set up and measured artificial lane markings. The lane markings were set
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up by extending a line from the center of the vehicle, and placing markings parallel to that

line, at a distance of 1.8m, for a total lane width of 3.6m. (See Figure 2-4, which depicts the

setup used.) 

I tested lateral position accuracy by manually moving the lane markers 5cm at a time,

taking lateral position readings at each step. This was done over the range [-1.2m, 1.3m]

(where a negative offset is left of center, and positive offset is right of center). Similarly, I

tested AutoTrak’s ability to measure lane width by varying the distance between the art

lane markings over the range [2.4m, 4.16m]. The results are shown in Figure 2-5. 

Figure 2-5 shows the estimates and estimate errors for lateral position and lane 

The top two graphs show the AutoTrak lane position and lane width estimates overlaid 

actual lane position and lane width. The bottom two graphs show the errors in lane po

and lane width estimates. The overall error is quite low, and nearly linear. In the range

50] cm, the error varies from 0 to -8 cm. The graph shows that AutoTrak tends to ove

mate the lateral position, making a vehicle seem further away from the lane center 

really is. While this could be a source of false alarms, it is not. One reason is that th

width estimate is also over-estimated, between 36 and 56 cm. 

These state variables were being over-estimated because of a false assumpt

AutoTrak makes regarding camera height. To allow for online calibration of camera 

angle, either lane width or camera height must be known. AutoTrak assumes that, wh

system is installed, lane width can vary but camera height will remain stable. Ther

AutoTrak uses numerous vehicle classes, such as sedan, mini-van, SUV, and truck. E

Left Lane Marker

Right Lane Maker

3.6m

Figure 2-4: Top-down View of AutoTrak Precision Experiment
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these vehicle types has an associated camera height. This means that camera height did not

have to be measured at each installation, based on the assumption that each sedan (for

instance) has its rear-view mirror at the same height. During installation, AutoTrak is told

which type of vehicle the system is being installed in. The problem occurred in AutoT

assumption of rear-view mirror height for sedans, which was over-estimated. Therefor

camera was really installed lower than the system assumed. This caused the image to

wider, and caused over-estimates of lane width and lateral position. 

Over 70 hours of driver data was collected before this problem was noted. Fortun

it does not have an impact on comparing lane departure warning algorithms within drive

only care about relative performance in that case. It does, however, create an issue in c

ing performance between drivers, as the height of the camera did change slightly be

installations in different vehicles, causing a small error in lane position and lane width
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Figure 2-5: AutoTrak Lane Position and Lane Width Estimates and Error. 
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mates. For this reason, the data cannot be corrected based on the above error measurements.

However, as the overall lane position error is relatively low, and in general agreement with the

increase in lane width, the calculations of warning system performance and analyses which

are presented in the next chapters are not adversely affected. The only corrections which could

be applied would just be a linear scaling of lane position and lane width, and therefore would

not change the gross behavior of any of the warning algorithms evaluated in this thesis. 

Confounding factors which existed in the Navlab 8 study were not an issue in this

experiment. The subjects were driving their own vehicle, and no experimenter was present.

More importantly, the subjects were engaged in long drives, often with family or other pas-

sengers within the car. The presence of other passengers can help drivers forget that they are

being monitored, and should encourage natural driving.

2.5 Summary

I begin this chapter with a motivation for the use of real world data, and then describe

the details of two driver studies which were conducted using lane tracking systems. The first

study had a more controlled environment, as it occurred in a single vehicle (NavLab 8),

around the same time of day, and in the presence of an experimenter. The second, naturalistic

study, was more free-form. It involved installing an AutoTrak data collection system in the

vehicle of a volunteer who was going on a extended (greater than 500 miles) trip. The experi-

mental methodology, resulting data, and confounding factors of both studies are discussed.

This chapter lays the foundation for the presentation and discussion of warning algorithm per-

formance, which I present in the next chapter.
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CHAPTER 3 Lane Departure 
Warning

3.1 Introduction

In this chapter, I present a model for predicting dangerous lane departures and explore

whether any differences in driver behavior can be exploited to improve the performance of a

lane departure warning system based on such a model. The purpose of this is to predict when

drivers are about to do something dangerous, and warn them in time so that they can take cor-

rective action. I am not interested in models of how people drive down the middle of the lane.

There has been a great deal of previous work in that area. Rather, I am concerned with models

of lane departures. In particular, I focus on lane changes, as they are a form of lane departure

which is relatively easy to capture.

A warning system should give as much warning time as possible, while triggering few,

if any, nuisance alarms (as defined in Section 1.2). The lane departure warning algorithm I use

has two parts: a vehicle state predictor, and an alarm decision model, which are defined in

Section 1.2. This algorithm has five parameters. This is a consequence of driver variation dur-

ing lane changes. If all drivers changed lanes with the same lateral velocity in all situations, it

would be possible to produce a model with just one parameter. This parameter could be

adjusted to increase the amount of warning time, with a corresponding increase in the number

of nuisance alarms. This parameter could then be tied to a knob marked “sensitivity,” a
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to the user to adjust to a level at which the number of nuisance alarms was acceptable. How-

ever, this is not the case. Drivers vary their lateral velocity when changing lanes, as shown in

Figure 4-3 on page 77. The marked off lane change areas in this figure show a spread of lateral

velocities. There is a further issue in that drivers do not drive in a straight line, i.e., their lateral

velocity during the entire lane change maneuver is not constant. Godthelp [24] models lane

changes as a sinusoidal trajectory. However, this is not completely accurate. True lane change

behavior lies somewhere in between a linear and sinusoidal model, and is not consistent

within drivers. Figure 3-12 illustrates a right lane change and the associated lateral velocity.

The lateral velocity increases for about 1 second, then stays constant for about 2 seconds

before the lane change event. This variability makes lane changes difficult to analytically

model, and requires looking at real world data. As I show, differences between drivers, within

drivers over time, and over road geometry require more intelligent modelling of the dr

behavior. These differences do not follow a single mathematical model. Due to this, I ex

training some of the parameters of a more sophisticated warning algorithm for individua

ers.

I begin with a discussion of previous work based on two current methods: Roa

Rumble Strips and Time to Lane Crossing (TLC). Following that, I present a descripti

the Future Offset Distance (FOD) algorithm, which is an extension of TLC. I then show

results on real world data of roadside rumble strips and of a standard TLC algorithm, to

onstrate the problems in warning time and excessive nuisance alarm rate the two m

have, respectively.

After that, I present results on training an FOD based warning algorithm tailored 

individual driver, and compare those with two other models: 1) a generic FOD model wh

tailored to a set of drivers, and 2) the FOD model which the AutoTrak lane departure wa

system uses. Then I present model extensions which can account for short-term cha

driver behavior due to variations in road geometry and variations over time; I then 

parameter analysis of the parameters involved. These model extensions improve warni

tem performance by lowering the number of nuisance alarms from 163 to 90, in the sim

case, while leaving the warning time mostly constant. Finally, I describe the behavior 
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individually trained models, and discuss some of the insights that these experiments have pro-

vided regarding driver behavior. All the experiments and analyses in this section were done

using real world data collected in the naturalistic study described in Section 2.4.

3.2 Previous Warning Algorithms

There is a great deal of previous work on driver models, reaching back to the 1950s.

Most of these models take some combination of vehicle state and road geometry as input, and

output the driver’s expected steering command. This previous work, along with an ove

of warning systems, is presented in the introduction, in Section 1.3. In this section, I foc

two specific warning methodologies: roadside rumble strips and TLC. This is in prepar

for experiments in the following section, which will demonstrate weaknesses of both m

ods.

3.2.1 Roadside Rumble Strips

This is a warning system which relies on grooves cut in the shoulder 15-45cm. be

the physical lane boundary. Figure 3-1 illustrates this. Drivers hear a low frequency soun

their vehicle vibrates when a tire rolls over the grooves. roadside rumble strips has

Figure 3-1: Roadside Rumble Strip System
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shown to reduce the number of run off road accidents by 70% [75]. There are, however, prob-

lems with roadside rumble strips. The first is that it is infrastructure-based. It is not present on

all highways, and adding it can be expensive. The second problem is that the amount of warn-

ing the driver gets can be low because the alarm doesn’t trigger unless the driver actuais in

danger. Finally, the number of nuisance alarms is high for drivers who tend to weave

This is especially problematic for truck drivers, who tend to weave quite a bit. Resul

evaluating roadside rumble strips on real driver data are presented in Section 3.5.2. 

3.2.2 Time to Lane Crossing (TLC)

The Time to Lane Crossing metric, which was first proposed by Godthelp [24],

measure of the time remaining before a vehicle on a given trajectory will depart the road

ure 3-2 illustrates this. The vehicle is entering a right curve, but is not yet steering to f

the curve perfectly. At this instant, the TLC is the amount of time the vehicle has befo

3.6m

Vehicle Path
and Road 
Intersection

α

Previous Vehicle Path

Figure 3-2: Depiction of the Time To Lane Crossing (TLC) algorithm. The TLC is a measure of the
time it would take for the first tire of a vehicle to cross a lane boundary. The prediction of
the vehicle’s path assumes that there will be no change in steering over the length of the
prediction, and can be computed using the vehicle’s velocity, relative yaw, α, and upcoming
curvature.
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front-left tire touches the left lane boundary. TLC generally assumes that the vehicle will not

change its steering radius over the length of the predicted path, and is calculated (by [41]) by

predicting the vehicle’s future path using discrete timesteps. 

The accuracy of TLC can be improved through the use of more complicated ve

models, for increased accuracy in path prediction, as shown by Lin [41] and others at th

versity of Michigan. Conversely, the vehicle and road models can be simplified, to use

information which is available from a vision system, as was done by Pomerleau. Figu

illustrates this approach. 

Rather than iteratively predicting the vehicle’s path and comparing it with the 

boundary, the simplified TLC is computed in one step. This is done by assuming that the

cle has a constant lateral velocity, determined by state measurements with the road. Th

assumption is that the road is locally straight. The yaw, combined with forward velocity

lateral position, can be used to calculate the time before the first wheel crosses the lane

ary. In the situation depicted in Figure 3-3, we see that these assumptions lead to an ov

3.6m

Vehicle Path
and Road 
Intersection

Previous Vehicle Path

Figure 3-3: Simplified TLC model. The vehicle is assumed to be traveling in a straight line based on
its forward velocity and heading, and the road is assumed to be locally straight.
Therefore, TLC is proportional to the length of the vehicle path to the lane boundary.
Although the consequence of ignoring road curvature is exaggerated in this illustration,
the true effect is usually minimal due to the relatively gentle curves on most highways,
and small vehicle heading angles (generally 0-1.5 degrees). 
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mation of TLC, which could potentially delay the triggering of a true alarm. However, in

practice, these errors are quite small due to the relatively shallow nature of most highway

curves and low relative yaw displayed by vehicles.

In general, TLC provides more warning time than roadside rumble strips, because

warnings are triggered when a driver is predicted to be in danger. However, this prediction can

be wrong, and therefore, the number of nuisance alarms is generally much higher than with

roadside rumble strips, as I show in Section 3.5.3. In the next section, I describe the Future

Offset Distance (FOD) algorithm, which provides much of the increased warning time of

TLC, while maintaining nuisance alarm rates similar to roadside rumble strips. 

3.3 Future Offset Distance

This section describes the Future Offset Distance algorithm which I use as the basis for

my lane departure warning experiments. This model allows the driver to drift past the physical

lane boundary before being alerted to possible danger. This is a more realistic model of driver

behavior, as certain drivers tend to drift beyond the lane boundary during normal driving.

Allowing this drifting to occur reduces the number of nuisance alarms. Although the roadside

rumble strips system recognizes this by placing the rumble strips beyond the lane boundary,

roadside rumble strips triggers when the driver is actually in danger, defined as being 15-45

cm. beyond the lane boundary. As these rumble strips are normally only used on wide shoul-

ders, the nature of the danger is debatable. This reduces the amount of reaction time available

to the driver.

Unlike roadside rumble strips, conventional TLC triggers an alarm whenever the vehi-

cle is predicted to exceed the physical lane boundary (Pilutti’s Virtual Rumble Strips [58

an exception). This allows for a prediction of danger, which allows the driver more rea

time than roadside rumble strips. However, by triggering a warning when the vehicle i

dicted to cross the physical lane boundary, TLC can trigger many nuisance alarms. F

similar to TLC in that it predicts when the driver is in danger of leaving the road, and trig

an alarm when the time to lane crossing is below a certain threshold. However, FOD e

roadside rumble strips’s idea of allowing the driver to drift beyond the lane boundary by
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ing a virtual lane boundary. If all drivers exceeded the lane boundary by the same amount,

then the width of the virtual lane boundary could be fixed, and all would be fine. However,

different drivers have different magnitudes of swerving, which means that the virtual lane

boundary needs to be a parameter. The advantage of FOD over roadside rumble strips is that

the virtual lane boundary can vary, and can be adjusted to suit an individual driver. If a partic-

ular driver tends to always stay within the lane, then the virtual lane boundary can be set

appropriately. More warning time could be provided to such a driver, as opposed to a driver

who normally drifts 10-20 cm. out of the lane. The FOD algorithm provides a framework in

which to explore and exploit such differences in driver behavior. 

3.3.1 Parameter Description

There are two parameters in the FOD algorithm: lookahead time, T, and virtual lane

boundary, V. The FOD lookahead time is how far in the future the system is willing to predict

future vehicle state. The virtual lane boundary is a distance beyond the physical lane boundary

which the driver is allowed to occupy. Figure 3-4 illustrates this. A warning is not triggered

when the vehicle is predicted to exceed the lane boundary. Rather, it is triggered when the

vehicle is predicted to exceed the virtual lane boundary, at time T from now, which is usually

beyond the physical lane boundary. If the following relation is true, then an alarm is triggered:

(3-1)

Where Lp’  is the predicted vehicle lateral position, and V is the virtual lane boundary.

There are many ways to compute the predicted lateral position, Lp’ . I use a 1st order kinematic

approach, where: 

(3-2)

Where Lp is the current distance from the virtual lane boundary, Lv is the lateral veloc-

ity, and T is the lookahead time. Other models are possible, such as 2nd order models which

use lateral acceleration information, or data-centric approaches such as memory based learn-

ing which use a distribution of actual future lateral positions calculated using training data.

Lp’ V>

Lp’ Lp TLv+=
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3.3.2 Performance

Mathematically, there is a set of FOD parameters which generate identical behavior,

assuming a constant lateral velocity. Figure 3-5 shows a case which illustrates this. If we

assume that the vehicle has a constant lateral velocity LV, and we want to trigger an alarm

when the right tire touches the lane boundary, then there are an infinite number of FOD looka-

head time and virtual lane boundary parameters which will produce the desired behavior. Intu-

itively, if we increase the virtual lane boundary, then to trigger at the same point, the

lookahead time has to be increased by a proportion of the lateral velocity:

(3-3)

where V is the desired virtual lane boundary, x is the desired trigger point (in meters,

relative to the lane edge), LV is the lateral velocity, and T is the lookahead time. This relation-

ship shows that, for any desired trigger point and virtual lane boundary, a lookahead time can

be found which satisfies the conditions.

Edge 

3.6m

1.0m

Virtual Lane
Boundary

0.5m

Physical Lane
Boundaryof

Shoulder

Figure 3-4: Future Offset Distance (FOD) Algorithm. An alarm triggers when the vehicle is predicted
to cross a virtual lane boundary. 

V x–
Lv

------------ T=
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While Equation (3-3) shows that there is an infinite set of equivalent FOD parameters,

in practice, not all parameters provide equal performance. As we will see later, the d

lane keeping ability plays a role in parameter selection. If the driver tends to weave a lo

a small virtual lane boundary value can trigger nuisance alarms. In these cases, increa

virtual lane boundary and the corresponding lookahead time can provide the same am

warning, while lowering the number of nuisance alarms. In the next section, I present e

ments which explore this idea.

3.4 Experimental Design

The purpose of the experiments in this section is twofold: 1) To evaluate pre

methods using real world data, and 2) to determine whether differences between drive

be exploited to improve the performance of a future offset distance based warning algo

by tuning the FOD parameters for a specific driver. The motivation for doing this is to t

reduce the number of nuisance alarms, while still maintaining an adequate warning time

rent systems, such as AutoTrak, assume that a user adjustable sensitivity setting provid

quate performance for all drivers. There are two questions inherent in this assumption

one set of parameters is adequate for all drivers, what are those parameters? and 2) D

VLB1 VLB2 VLB3

Lv

T1 T2 T3

Figure 3-5: Depiction of FOD parameter equivalence. For a particular lateral velocity, there is an
infinite set of VLB and Lookahead Time (T) parameters which trigger an alarm at the same
location. The FOD parameters (T1, VLB1), (T2, VLB2), and (T3, VLB3) will all trigger at
the same location. 
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set of parameters adequately represent all drivers? In particular, I look at the effectiveness of a

warning system based on the AutoTrak FOD parameters, vs. a warning system which is

trained on a “generic” driver, which is a combination of all drivers (to examine question 1

an FOD model trained for an individual driver (for question 2). The results will show th

certain cases training does provide better performance.

3.4.1 Terminology

In the rest of this chapter, I will be using the following notation:

• D(n) - Driver “n”.

• Dgen(n) - This is a “generic” driver, which is a time-weighted combination of all the driv
data except that of driver “n”. 

• T - FOD (or TLC) Lookahead Time.

• V - FOD Virtual Lane Boundary. 

• FOD(n, w) - Trained FOD parameters with the lowest nuisance alarm rate given the desired 
warning onset time w. 

• FOD(T, V, n) - Apply the FOD model with parameters “T” and “V” to driver “n”

• wot(FOD(T,V)) - The WOT resulting from applying parameters “T” and “V”.

• nar(FOD(T,V)) - The NAR resulting from applying parameters “T” and “V”.

3.4.2 The Data

The naturalistic driver study described in Section 2.4 involved nine subjects, and

lected about 70 hours of data. However, not all of the data was useful for these exper

Of the nine subjects, three had data which was unusable due to an error which resulted

30 second dropouts every 3 minutes or so. An additional driver had long stretches wh

overall confidence of the AutoTrak system was low. This subject indicated that most o

data was collected on either snowy or rural roads, which could explain the extended per

low confidence. Finally, the data for Driver 1 contained an unknown amount of data fr

different driver. This is because the subject allowed a passenger to drive for a short 

without turning off the data collection system. The subject has indicated that he did the m

ity of the driving, and that only a small portion was done by the passenger. Therefore, I u

data, with the caveat that the results on this driver may be colored. The total amount o
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used is listed in TABLE 3-1. Of the nearly 70 hours of data, only 18.5 were usable. The num-

ber of lane changes is important, because, as I explain below, they will be used as surrogate

lane departure events. 

Figure 3-6 shows a histogram of lateral position for the five test drivers, along with a

composite distribution of all the drivers. Figure 3-7 shows the same information for lateral

velocity. Note that most of the histograms look alike. This is not surprising, as there is proba-

Driver
Amount of Data 

(hours)
Number of Lane 

changes

Driver 1 5.22 170

Driver 5 2.76 67

Driver 7 1.44 55

Driver 8 2.54 93

Driver 9 6.54 219

Total: 18.50 604

TABLE 3-1 : Details of the data used in this experiment
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Figure 3-6: Lateral Position Histograms of Test Subjects. 
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bly fixed range of comfortable lateral velocities when driving. TABLE 3-2 shows the means

and standard deviations of the lateral position for the five drivers. The lateral position data

from three seconds before and three seconds after each lane change was discarded when cal-

culating these statistics. A negative lateral position is left of center, and positive is right of

center. The spread between the left-most and right-most mean lateral position is small -- about
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Figure 3-7: Lateral Velocity Histograms of Test Subjects.

Driver
Lateral 
Position 

Mean (m)

Lateral 
Position 

Standard 
Deviation 

(m)

1 0.08 0.45

5 -0.08 0.29

7 -0.09 0.34

8 -0.17 0.33

9 0.04 0.30

TABLE 3-2 : Lateral Position Means and Standard Deviations
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0.25m. Most of the standard deviations are similar as well, except for D(1), whose standard

deviation is higher than that of the other drivers. We will see later that the difference in stan-

dard deviation will have an impact on warning system performance. 

The standard deviations reported here are somewhat larger than statistics which have

been seen in other work. [57] has a summary of these statistics, which show lane keeping stan-

dard deviations ranging from 0.14m to 0.24m for different types of vehicles (cars, minivans,

and trucks) under different circumstances (test track or freeway driving). One possible reason

for the discrepancy is that the individual driver statistics I present were computed on larger

amounts of data than previous work, which was collected in changing environments and over

discontinuous periods of time, allowing for individual drivers to display varying behavior.

Figure 3-8] and Figure 3-9 show histograms of lateral velocities at the point where

AutoTrak detects a lane change. Note that the majority of the lane changes like in the 0.5m/s

to 1.0m/s range. This provides evidence that drivers do not always change lanes with exactly

the same trajectory.
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Figure 3-8: Lateral Velocity at Lane Change event for Left Lane Changes
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3.4.3 Evaluation

This section describes the methodology of the experiments, which involves testing

roadside rumble strips and TLC performance, and finding the optimal FOD parameters for a

particular driver and comparing it against a generic model and the hand-tuned AutoTrak

model. The warning algorithm is evaluated using two metrics: Warning Onset Time (WOT),

and Nuisance Alarm Rate (NAR). WOT is the time between the alarm trigger and the first tire

touching the edge of a pre-set virtual shoulder, and is calculated assuming lane changes are

true alarms. The nuisance alarm rate measures how many nuisance alarms occur per hour.

I chose to use lane changes as surrogate lane departures because true lane departures

which involve an accident are very rare. Even if the data contained a true road departure, it

would be difficult to evaluate system performance using just one example of a road departure.

Therefore, I am using lane changes, which are similar to certain types of road departures, pri-

marily those due to unintended steering wheel motion. Lane changes are not similar to other

types of road departures -- particularly those in which the driver slowly drifts off the road. A
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Figure 3-9: Lateral Velocity at Lane Change event for Right Lane Changes



Experimental Design 43
lane change generally involves lateral velocities of 0.5-1.0m/s, as shown in the memory table

in Figure 4-2 on page 76, where the lane change areas lie in this lateral velocity range. Slow

drifts, however, can have lateral velocities as low as 0.2m/s. 

3.4.3.1 Alarm Generation and Suppression

When the vehicle is predicted to be beyond the virtual lane boundary, an alarm is trig-

gered. The location of this alarm is stored for later analysis. In the case of a non-lane change

alarm, it is possible that the vehicle will be in an alarm generating state for an extended period

of time. Rather than trigger a separate alarm for each timestep, I use an alarm suppression

heuristic which generates one alarm per excursion event. By excursion event, I mean a contig-

uous period of time in which the vehicle is in an alarm state. For example, if the driver is

entering a construction zone, and is forced to one side of the lane by traffic cones, it would be

inappropriate to continuously sound an alarm. Rather, it is preferable to sound an alarm once,

and then not trigger it until the driver has entered a quantitatively different excursion state. It

would be best if the system were to detect that the vehicle is in a construction zone and not

trigger at all; however, that is beyond the scope of the work described in this thesis. An

approximation to this is discussed in Section 3.6.2. When an alarm is triggered, all future

alarms are suppressed until the driver has not been in an alarm state for the previous six sec-

onds. This prevents clustering of multiple alarms, and is shown in Figure 3-10.

3.4.3.2 Alarm Classification

Not all alarms are true alarms. Drivers who weave a lot trigger nuisance alarms, and

detecting and classifying these events is important. Using lane changes as surrogate lane

departures simplifies this task. It is easy to detect lane changes in AutoTrak data, as there is a

signal which indicates when AutoTrak thinks a lane change has occurred. This is based on a

combination of lateral position and lateral velocity and the acquisition of new features in the

adjacent lane. The lateral position data during this time also jumps, as shown in Figure 3-12.

Combining the Autotrak lane change event with discontinuity detection allows for accurate

tagging of actual lane changes.
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The classification then operates as follows: For a given driver D(n), the FOD algo-

rithm is run over all the data for that driver. This results in a set of alarm triggers, S. For each

alarm trigger, , the neighborhood of a is searched. If a lane change is found, then a is

marked as a true alarm. In all other cases, the alarm is marked as a nuisance alarm. The defini-

tion of nuisance alarms in Section 1.2 states that nuisance alarms are alarms which the driver

does not believe were necessary. That is impossible to judge when working with offline data,

so I use a relatively harsh definition of nuisance alarms: namely, anything which is not a lane

change, is a nuisance alarm. It is likely that in an online system, drivers may feel that some of

the alarms which are classified as nuisance alarms, particularly those which involve a large

(greater than 1 ft.) excursion, are justified, and should be classified as true alarms. I do not

make such a judgement because there have been no studies to determine what drivers consider

nuisance and true alarms. Therefore, the nuisance alarm rates which are reported here may be

higher than actual nuisance alarm rates. 
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would trigger, indicated by the lighter square
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3.4.3.3 Warning Onset Time Calculation

The Warning Onset Time (WOT) measures how much reaction time the driver would

have to prevent the outside tire from crossing a virtual 3-foot shoulder. The larger the WOT

the better, as a larger WOT means the driver has more time to react to a warning and prevent

an accident. The data I collected did not have shoulder width information. Therefore, I use a

value of 0.91m (3.0ft). While this is narrower than the average shoulder width of U.S. high-

ways, using this shoulder width combined with acceptable nuisance alarm rates lead to warn-

ing onset times which are just above the threshold of human reaction time, making this an

interesting area to explore. When dealing with lane changes, this shoulder is actually a virtual

shoulder, and is used as a baseline for computing the WOT. An alternative method would be

to compute the WOT relative to when the vehicle actually crosses the virtual lane boundary.

However, WOT would then be dependent on the selection of the virtual lane boundary, which

would make comparing the results of different FOD parameters difficult.

In principle, I calculate the WOT as follows: When an alarm triggers, search forward

in the data up to a certain point (usually about 3 seconds or so) and see if a lane change is

found. If a lane change is found, then find the point where the vehicle’s outside whee

exceeds the (virtual) shoulder width. There are now two points: the alarm trigger poin

the shoulder excursion point. The difference in time between these two points is the WO

In practice, it is not possible to find the exact shoulder excursion point, due to the

Autotrak handles lane changes. Figure 3-12 illustrates this. The top plot shows the 

position during the six seconds surrounding a right lane change, and the bottom plot is 

eral velocity during this same period. Positive lateral position and velocity are rightward

negative are leftward. The lateral position indicates the position of the center of the v

relative to the center of the lane. Notice the discontinuity near T=1327. This marks a

change event, and is the point where Autotrak locks onto the new lane. In general, th

particularly the lateral velocity, for two to three seconds after this point is unreliable, and

not be used.
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Given a 0.91m virtual shoulder, a 3.6m lane width, and a 1.8m vehicle width, the

shoulder excursion point occurs when the center of the vehicle is 1.81m away from the lane

center. However, the lane change event occurs before the vehicle is actually at the shoulder

excursion point. At the lane change event, the lateral position is around 1.55m. To accommo-

date this, I linearly extrapolate lateral position to find the time of the shoulder excursion point.

Physical Lane Boundary Virtual Lane Boundary Virtual 3’ Shoulder Physical Shoulder

Alarm Trigger Point

Shoulder Excursion Point

WOT

Figure 3-11: Depiction of Warning Onset Time Calculation.
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The bottom plot on Figure 3-12 shows the actual lateral velocity (which, again, is valid only

until the lane change event). The lateral velocity is constant for nearly two seconds before the

lane change event, indicating that this sort of linear extrapolation of lateral position is justi-

fied. This is another reason for not using larger shoulder widths. The extrapolation required to

find the shoulder excursion point for a six or nine foot shoulder would be significant, and

could affect the WOT calculation. 

Ideally, the WOT should be equal to the FOD lookahead time, i.e., if we are trying to

predict lane changes 1.0 seconds in advance, then when we do predict a lane change, the pre-

diction should occur 1.0 seconds before the event. However, the FOD algorithm predicts when

the vehicle will be beyond the virtual lane boundary. The WOT is calculated relative to the

0.91m virtual shoulder. This discrepancy means that the WOT will not be equal to the predic-

tion timestep.

There is a secondary effect which causes variance in the WOT calculation. The linear-

ity in Figure 3-12 is not completely consistent. It is possible to find lane changes where the

linear portion is of shorter duration, and there are cases where the lateral velocity is not con-

stant between the alarm trigger point and the shoulder excursion point. This variability affects

the warning onset time.

3.4.3.4 Nuisance Alarm Rate Calculation

The Nuisance Alarm Rate (NAR) is the other metric which I use to calculate alarm

system performance. The Nuisance Alarm Rate indicates the number of alarms per hour

which are not true alarms. This is an important metric because if the NAR is too high, then

drivers might become frustrated with the system, and turn it off, or become habituated, and

not react in time to a true alarm. A driver’s NAR is calculated by counting all the ala

which do not correspond to lane changes, and dividing by the length of the data (in ho

do not attempt to further classify which nuisance alarm are false alarms, based on in

sensor information or model inaccuracy, as defined in Section 1.2. The naturalistic data

confidence measure which allows data which the AutoTrak system believes to be inac

to be filtered out.
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3.4.3.5 Warning Onset Time vs. Nuisance Alarm Rate Trade-off

There is a natural trade-off between warning onset time and nuisance alarm rate.

Namely, as the warning onset time increases, so does the nuisance alarm rate. This is because,

to increase warning onset time, either the lookahead timestep, T, has to be increased, or the

virtual lane boundary, V, has to be decreased. Either change makes the algorithm more sensi-

tive, and causes more triggers in areas which are not lane changes. Figure 3-13 shows the

trade-off for D(9). The x-axis is warning onset time, and the y-axis is minimum nuisance

alarm rate achievable for the corresponding warning onset time. The trade-off is not linear --

nuisance alarm rate tends to increase fairly quickly after a certain point. This is the main con-

straint which will affect all the experiments presented below, and the performance of the FOD

algorithm. 

3.5 Methodology

The above sections described the evaluation metrics which were used. Here, I give

details of the methods which are evaluated and how the FOD training and testing is done. 
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3.5.1 The Warning Algorithms

This section describes the different methods which are evaluated: roadside rumble

strips, TLC, AutoTrak FOD, Generic Learned (GL), and Individual Learned (IL). The infra-

structure-based roadside rumble strips system is simulated to have a warning threshold set

0.15m beyond the physical lane boundary. The TLC model uses a 1.0s lookahead time, and

triggers when the vehicle is predicted to cross the physical lane boundary. The AutoTrak FOD

model uses a lookahead time of 0.85s and a virtual lane boundary of 0.10m. These parameters

were hand selected to trigger just before the tire crosses the lane boundary during lane

changes and fast lane departures, and to allow the driver to approach the lane boundary at low

lateral velocities without a trigger.

The Generic Learned model attempts to answer the question: “What would the p

mance be if we found one set of FOD parameters (lookahead time and virtual lane bou

for a set of drivers, and tested these parameters on a new driver?”. Therefore, when tra

generic model for D(n), the data for all drivers except that of D(n) is used. Indirectly

results of this model provide information on how similar driver performance is. The Ind

ual Learned model, as the name implies, attempts to find the best FOD parameters for a

ular driver, ignoring all other drivers.

3.5.2 Roadside Rumble Strips Results

TABLE 3-3 shows how the roadside rumble strips system would perform on the 

ralistic datasets. In general, the nuisance alarm rate is low, except for D(1). D(1)’s high

(greater than 5/hour) implies that D(1) frequently exceeds the physical lane bounda

0.15m during normal driving. The NAR for the other drivers is low, and most likely acc

able. However, the warning onset time is also low. In all cases, it is less than 1 second.

this is within the boundaries of human reaction time, as shown by [REF], it is not much

in which to react to a dangerous situation. As [75] shows, the roadside rumble strips s

has reduced run off road accidents by 70%. A system which provided more warning

time would presumably be even more effective on a roadway with wide shoulders and

work on roadways with narrow shoulders. 
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3.5.3 TLC Results

While the roadside rumble strips system has an nuisance alarm rate which is accept-

able for most drivers, the warning onset time is low. TLC can provide greater warning onset

time. However, as TABLE 3-4 shows, this comes at the expense of additional nuisance

alarms. The warning onset time increases by over 80%. The NAR rises dramatically, though.

For D(1), it is an alarm every 1.5 minutes, which is clearly unacceptable. The lowest alarm

rate (5.35/hour for D(9)) is equal to the highest alarm rate generated by the roadside rumble

strips system.

Driver WOT (s)
NAR 

(alarms/
hour)

Nuisance 
Alarms

D(1) 0.99 5.36 28

D(5) 0.88 0.36 1

D(7) 0.96 1.39 2

D(8) 0.91 0.00 0

D(9) 0.94 1.07 7

TABLE 3-3 : Roadside Rumble Strips Warning Results

Driver WOT (s)
NAR 

(Alarms/
Hour)

Nuisance 
Alarms

D(1) 1.87 41.90 219

D(5) 1.59 6.88 19

D(7) 1.78 22.22 32

D(8) 1.74 10.99 28

D(9) 1.79 5.35 35

TABLE 3-4 : TLC Warning Results



Methodology 51
3.5.4 FOD Training

In the previous two sections, I present the results of two current warning systems,

roadside rumble strips and TLC, as tested on real world driving data. The results show that

both systems have advantages; roadside rumble strips has few nuisance alarms (but a low

warning onset time), while TLC has a high warning onset time (but high nuisance alarm rate).

In this section, I present the results of experiments using an FOD warning algorithm, and

show that this approach provides more warning onset time than roadside rumble strips, while

maintaining a low nuisance alarm rate. In this first section, I give the details of how the FOD

warning algorithm can be trained for a particular driver (the individually learned model), or

for all drivers (the generic learned model). These two cases are described in Section 3.5.1.

 The two metrics which are used to compare warning system performance, warning

onset time and nuisance alarm rate, do not have the same units, and cannot be directly com-

pared. That is, if one alarm system produces a 1.5s WOT and a 0.5 NAR, is that better than the

system which gives 1.75s WOT but a higher 0.75 NAR? It is possible to define acceptable

trade-offs using decision theory, as done by Goodrich [25]. However, any such definition

would be biased by the interpretation of the experimenter. Instead, I try to compare warning

systems in which one of the metrics is equivalent. It is much easier to believe that a warning

system with a 1.5s WOT and a 0.5 NAR is better than one with a 1.5s WOT but a 2.0 NAR.

To compare the generic models against AutoTrak, FOD(0.85, 0.1, n) is computed,

. Taking Driver 1 as an example, FOD(0.85, 0.1, 1) results in a specific

WOT, w, and NAR, a. Then, FOD(Dgen(1), w) is found, which uses all the drivers except

D(1) and finds a set of parameters which gives the lowest nuisance alarm rate at a WOT of w.

These parameters are then applied to D(1), and the resulting nuisance alarm rate is compared

against the nuisance alarm rate of FOD(0.85, 0.1). The parameter search is done using brute

force, as the parameter space (T and V) is relatively small. The algorithm, using D(1) as an

example, is:

• Apply each FOD parameter pair to all the data in Dgen(1), and store the WOT and NAR 
results

• Find the set of FOD parameters, p, which results in the desired WOT.

• Find the parameters in p with the lowest NAR. 

n 1 5 7 8 9, , , ,( )∈
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• Apply this parameter to D(1), and store the WOT and NAR results. 
This can be considered to be an optimization problem to satisfy the following con-

straints:

(3-4)

(3-5)

The individual model is trained in the same way, except that a leave-one-out cross val-

idation is used for subsets of the data for a particular driver. The desired WOT is computed

using FOD(0.85, 0.1, 1) (for D(1)). The data for D(1) is split into approximately half-hour

segments. Training is done as follows:

• Pick one of the half-hour segments to use as a test set

• Do a brute-force FOD parameter search and find the parameters which produce the desired 
WOT and minimize the nuisance alarm rate on the remaining data (the training set), using 
the algorithm above. 

• Apply this parameter to the test set, and store the WOT and NAR.

• Repeat, using a different segment as the new test set, until all segments have been tested.

This results in n estimates of WOT, and NAR, where n is the number of half-hour seg-

ments for the driver. These n estimates are then averaged together. 

3.5.5 FOD Results

TABLE 3-5 shows the results of comparisons against the AutoTrak FOD parameters.

In general, the learned models performed better than the AutoTrak parameters. In most cases,

the generic model performed better than the individually learned model, although usually by

two or fewer alarms. With D(7), however, the difference in number of alarms between the

generic and individual models was 4. However, this difference comes at the expense of 0.12s

of WOT. Furthermore, there are only about 1.4 hours of data on D(7). Of that, in the cross-val-

idation, a half hour was used as test data, leaving only one hour of training data. It is possible

that the lack of training data caused the lower performance. In contrast, D(1) and D(9) had

WOT wot FOD 0.85 0.10,( )( )=

NAR MIN nar FOD T V,( )( )

V 0.0=

0.9

∑
T 0.0=

8.0

∑
 
 
 
 

 
 
 
 

=
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about 4.5 and 5.5 hours of training data, respectively. Although the generic model performed

best for D(9), it was only by two alarms. The generic parameters may perform better at times

because they capture a wider variety of driver behavior, causing the chosen generic parame-

ters to allow for more weaving, as is explained in Section 4.2.7.3. The WOT for the generic

results are usually somewhat lower than the trained results, except for D(8).

3.6 Modelling Additional Driver Behavior

The alarm decision model described above, and the warning algorithm it is a part of,

make two assumptions: 1) Driver behavior does not change with road geometry, and 2) Driver

behavior does not change over time. However, both these assumptions do not hold, as I dem-

onstrate. Accounting for behavior changes due to road geometry and time results in a more

complete alarm decision model, which improves lane departure warning system performance.

The first additional behavior I model is curve-cutting, or the tendency to drift toward the

inside of a curve. The second is local adaptation, which allows the driver to change behavior

over time.

Driver
ATrak 
WOT 

(s)

Generic 
WOT 

(s)

Ind. 
WOT 

(s)

Atrak 
NAR 

(alarms/
hour)

Generic 
NAR 

(alarms/
hour)

Ind. 
NAR 

(alarms/
hour)

ATrak 
Nuis. 

Alarms

Generic 
Nuis. 

Alarms

Ind. 
Nuis. 

Alarms

1 1.64 1.71 1.61 20.28 11.29 8.61 106 59 45

5 1.44 1.33 1.39 3.62 2.17 2.90 10 6 8

7 1.52 1.36 1.48 10.42 5.56 8.33 15 8 12

8 1.55 1.57 1.49 4.32 4.32 4.71 11 11 12

9 1.57 1.52 1.54 3.21 1.68 1.99 21 11 13

TABLE 3-5 : Warning System Performance Comparison Between AutoTrak, Generic Learned, 
and Individual Learned. Bold indicates lowest nuisance alarms.
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3.6.1 Curve Cutting

Curve-cutting is a behavior in which drivers tend to shift toward the inside of a curve.

There are physiological reasons for doing this -- [40] has shown that when people negotiate

curves, their eyes tend to focus on the inside of the curve. Also, when traversing a curve, if the

driver starts at the outside, shifts inwards, and then back out, the radius of curvature is maxi-

mized and lateral forces are minimized, resulting in a smoother drive. Figure 3-14 shows a

depiction of curve cutting. Drivers do not always cut curves. Sometimes, they move to the

outside of a curve, if they do not steer in time, or understeer. 

Figure 3-14: Illustration of Curve Cutting. Note how the vehicle moves towards the inside of the
curve. This trajectory minimizes lateral forces. 
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3.6.1.1 Curve Cutting Evidence

The naturalistic data provides evidence for curve cutting, as shown in Figure 3-15.

This figure shows the mean lateral position for five different cases: shallow and sharp left

curving roads, straight roads, and shallow and sharp right curving roads. A shallow curve is

defined as one where the radius of curvature is between 1000m and 2000m. A sharp curve is

one where the radius of curvature is less than 1000m. A straight road is any whose radius of

curvature is greater than 2000m. Negative lateral positions are left of center, and positive lat-

eral positions are right of center. 

The table shows that, in every case, the mean lateral position during left curves is to

the left of the mean lateral position during straight segments. This effect is stronger for sharp

curves than for shallow curves. The same is true for right curves, except for D(1), where there

the straight mean is slightly rightward of the right curve mean. This could indicate that either

D(1) cuts slightly to the outside of right curves, or does not cut at all. This indicates that in

general, driver mean lane position varies inversely with radius of curvature -- the sharper the

curve, the more curve cutting the driver exhibits.

3.6.1.2 Curve Cutting Model

Curve cutting behavior can cause additional false alarms, particularly if the driver

exceeds the lane boundary. It is possible to account for this by temporarily increasing the vir-

tual lane boundary on the direction toward the inside of the curve, allowing the driver more
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leeway. The evidence in the previous section implied that curve cutting behavior varies

inversely with radius of curvature. Therefore, the alarm decision model is updated to include a

term for curve cutting, and an alarm is now triggered if the following relation is true:

(3-6)

Where Lp is the lateral position (in meters), Lv is the lateral velocity, T is the FOD loo-

kahead time, V is the FOD virtual lane boundary, c is a curve cutting weight, and R is the

instantaneous radius of curvature (in meters). Note that this is an inversely proportional map-

ping from radius of curvature to virtual lane boundary extension. The curve cutting allowance

is applied only if R is less than 2000m, and is capped at 0.50m. The capping is done so that

extreme amounts of curve cutting are not allowed. The evidence in the previous section sug-

gests that the change in mean lateral position between straight roads and sharp curves can be

as high as 0.35m (for D(8)), so 0.50m is a reasonable value at which to cap the allowance. The

100 in the denominator converts the allowance from centimeters to meters. The weighing

parameter, c, could be tailored to an individual driver; however, as the next section shows, the

value is not critical. 

3.6.1.3 Curve Cutting Parameter Analysis

To determine the sensitivity of warning system performance as the curve cutting fac-

tor, c, is varied, I did an experiment which tested different values of c over the range [0.0,

16.0], and compared the WOT and NAR. For each driver, FOD parameters were found which

produced approximately five alarms/hour, while maximizing WOT, when no curve cutting

allowance was used. Figure 3-16 shows the results. There are five graphs in the figure, one for

each driver. The top plot in each is the WOT vs. curve cutting factor and the bottom plot

shows NAR. In all cases, the WOT decreases as c increases. This makes sense, as the increas-

ing c allows the driver to deviate further from the lane center, so lane changes towards the

inside of a curve will be detected later. 

Lp TLv+ V

MIN c
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R
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Figure 3-16: Results of Curve Cutting Factor Parameter Analysis. For each plot, the top
window is WOT and the bottom window is NAR. 
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The nuisance alarm rate drops with increasing c, as alarms due to curve cutting are

eliminated. This decrease in nuisance alarm rate plateaus, indicating that not all the nuisance

alarms are caused by curve cutting. Note that the decrease in nuisance alarm rate seems to pla-

teau around the area c=8.0. Picking a value of c=8.0 seems reasonable, as at that point, the

drop in WOT is less than 0.10s, and the nuisance alarm rate is mostly unchanging beyond that

value. It is possible that allowing for curve cutting could have an adverse impact on WOT, if a

lane departure were to occur towards the inside of a sharp curve. In that case, the curve cutting

adaptation would result in the alarm triggering later, reducing the driver’s reaction time. 

ever, based on an analysis of 200 ROR crashes, [60] shows that crashes where the

drifts off the inside of a curve are four times less likely than accidents where the driver

off the outside of the curve. The next section shows the results of the same expe

described in Section 3.5, but with the additional curve cutting term in the model, and 

results are discussed next. 

3.6.1.4 Curve Cutting Modelling Results

The results against AutoTrak are shown in TABLE 3-6. The first thing to notice is 

across the board, the alarm rates have gone down, when compared against the results

curve cutting allowance. AutoTrak does better with the addition of this term, along wit

trained models. This reduction in nuisance alarm rate comes with almost no real cha

Driver
ATrak 
WOT 

(s)

Generic 
WOT 

(s)

Ind. 
WOT 

(s)

Atrak 
NAR 

(alarms/
hour)

Generic 
NAR 

(alarms/
hour)

Ind. 
NAR 

(alarms/
hour)

ATrak 
Nuis. 

Alarms

Generic 
Nuis. 

Alarms

Ind. 
Nuis 

Alarms

1 1.59 1.63 1.54 14.92 13.39 6.51 78 70 34

5 1.39 1.29 1.36 1.45 0.72 0.72 4 2 2

7 1.47 1.32 1.43 6.25 4.86 5.56 9 7 8

8 1.53 1.58 1.45 2.36 4.32 3.14 6 11 8

9 1.52 1.49 1.47 1.99 1.07 1.07 13 7 7

TABLE 3-6 : Warning System Performance Comparison Between AutoTrak, Generic Learned, 
and Individual Learned, using a Curve Cutting Allowance. Bold indicates lowest nuisance 
alarms.
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WOT. Again, the individual model for D(1) has a lower NAR than the generic and AutoTrak

models. For the other drivers, either the individual or generic learned model does best, except

for D(8), where the AutoTrak model has two fewer alarms than the trained model.

3.6.2 Local Adaptation

The training in the previous sections tries to find one set of FOD parameters which

minimize nuisance alarm rate for a desired warning onset time. As we have seen, this

approach is generally an improvement over the hand picked AutoTrak parameters. These

trained parameters, while globally a good choice, may not be the best choice locally. That is, if

a driver spends 98% of the time driving nearly down the center of the lane, without swerving

much, then training may yield a narrower virtual lane boundary, as this would increase warn-

ing onset time. If, during the other two percent of the time, the driver is hugging one side of

the lane, the narrow virtual lane boundary could generate false alarms. This shift in lateral

position could occur for many reasons: construction zones, passing trucks, a narrow shoulder

on the opposite side, driver behavior, etc.
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3.6.2.1 Local Adaptation Evidence

 Figure 3-17 shows an example of this, from one minute of D(9)’s data. The top

shows one minute of instantaneous lateral position data, while the bottom plot is a six-s

moving average of lateral position. Over the course of one minute, the driver has a 

position shift of over one meter, with about 8 seconds spent nearly touching the righ

boundary (time ~868 - ~875s). Appendix C shows further evidence, using the Navlab 8

that drivers shift because of adjacent vehicles.

Ideally, it would be nice to know why the driver’s behavior has changed. If a war

system could detect a passing truck, or knew the vehicle was entering a construction

then that information could be used to modify the warning algorithm. In practice, this ty

information is not available. AutoTrak has neither obstacle detection capability, not

knowledge of the surrounding road conditions. While it is possible to add sensors aro

vehicle to detect other objects, this is an expensive, non-portable solution. Similarly, the

currently no roadway information systems which transmit local road conditions, such as

struction activity.
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Figure 3-17: Evidence of local deviations in lane
position. 
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3.6.2.2 Local Adaptation Model

It is still possible to adapt to local deviations, however, by looking at a lagged (by the

window size) moving average of the vehicle’s lateral position. By doing so, a warning sy

would know when the driver’s behavior has changed, although it could not infer the reaso

that change. If we assume that all such short term changes are due to external circumst

decisions made by the driver, rather than to inattention or drowsiness, the alarm de

model can be modified to allow the driver more latitude in these circumstances.

In doing this, there are two questions to consider: How fast should the warning 

rithm adapt to the driver? and how should the virtual lane boundary be modified? One w

to trigger an alarm if the following is true:

(3-7)

Where Lp is lateral position, Lv is lateral velocity, T is the lookahead time, and V is the

virtual lane boundary.  is an average of lateral position from time t to time t-n, where

n is in seconds, and a is the local adaptation factor, which weights the contribution of the 

rent mean lateral position to the virtual lane boundary. Therefore, there are two new pa

ters, n and a. As with the curve cutting factor described in Section 3.6.1.2, a param

analysis of the new parameters shows that the selection of these parameters is not criti

3.6.2.3 Local Adaptation Parameter Analysis. 

This section describes a parameter analysis in which the parameters n and a from

Equation (3-7) are varied over the range  and , using FOD 

curve cutting parameters which produce approximately 10 alarms/hour. Figure 3-18 sho

warning onset time (on the left) and nuisance alarm rate (on the right) results. The x-axn,

and the 11 lines on each graph represent different values of a, from 0.0 to 1.0, in increments o

0.1, starting at the top. The topmost line in each graph represents a=0.0, which is the default

case where no local adaptation is added to the virtual lane boundary. 

Lp TLv+ V a Lp t n– t,( )( )( )+{ }>

Lp t t n–,( )

a 0.0 1.0,[ ]∈ n 1.0 20.0,[ ]∈
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Figure 3-18: Local Adaptation Parameter Analysis. The left graphs are WOT results, and
the right graphs are NAR results. Each graph contains 11 lines, where the top
line is a=0.0, and the bottom line is a=1.0.
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As a increases (for a fixed value of n), we notice two things: the warning onset time

drops, and the nuisance alarm rate drops. This is because when a increases, the local average

contribution to the virtual lane boundary increases, pushing it further out, and decreasi

probability of a nuisance alarm. Similarly, since the virtual lane boundary is wider, it t

longer for true alarms to be detected, decreasing the warning onset time.

For low values of n, the virtual lane boundary adapts quickly to changes in lateral 

iton. At the extreme, when n=1.0, the nuisance alarm rate and warning onset time drop 

matically. This is because the system is adapting too quickly, so that alarms (both tru

nuisance) become difficult to detect. At higher values of n, beyond 8.0s, there is not much of

change in warning onset time or nuisance alarm rate. In that region, the value of a has more of

an effect. Based on these results, I decided to use n=6.0s and a=0.8. 

3.6.2.4 Local Adaptation Results

Tables TABLE 3-7 shows the results of AutoTrak vs. generic vs. individual train

performance, using an FOD model which includes both curve cutting and local adap

The addition of local adaptation lowered alarm rates for all the cases. As in the previous

using an individually trained model for D(1) greatly reduces the number of false alarms.

Driver
ATrak 
WOT 

(s)

Generic 
WOT 

(s)

Ind. 
WOT 

(s)

Atrak 
NAR 

(alarms/
hour)

Generic 
NAR 

(alarms/
hour)

Ind. 
NAR 

(alarms/
hour)

ATrak 
Alarms

Generic 
Alarms

Ind. 
Alarms

1 1.48 1.54 1.44 7.08 6.12 3.44 37 32 18

5 1.27 1.19 1.23 0.36 0.00 0.00 1 0 0

7 1.23 1.10 1.26 4.17 2.78 3.47 6 4 5

8 1.41 1.43 1.37 0.79 2.75 1.18 2 7 3

9 1.37 1.30 1.34 0.92 0.46 0.61 6 3 4

TABLE 3-7 : Warning System Performance Comparison Between AutoTrak, Generic Learned, 
and Individual Learned, in Alarms/Hour Format, using a Curve Cutting Allowance and Local 
Adaptation. Bold indicates the lowest number of nuisance alarms.
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The results for the other drivers are harder to interpret. Either an individual or generic

trained model has a lower nuisance alarm rate than AutoTrak, except for D(8). However, there

is only a 1 alarm difference between AutoTrak’s performance and the individually tra

model. In all the cases, except for D(1), the difference in nuisance alarm rate between th

vidually trained model and AutoTrak is less than or equal to two. Overall, the numb

alarms is becoming small enough that direct comparisons are difficult.

3.7 Results Analysis

The previous sections presented alarm system performance as the FOD alarm d

model grew to include more aspects of driver behavior. This sections ties together the 

of the AutoTrak comparisons, over the three different models, and presents further data

performance improvement due to modelling curve cutting and local adaptation beh

Finally, I analyze the parameter choices made by the individual trained model, concen

on D(1) and D(9), as these drivers had the most data.

3.7.1 Combined Results

Figure 3-19 shows a graphical summary of the experiments performed ag

AutoTrak. The top graph shows the warning onset time for all five subjects over diff

model combinations and training methods. The bottom graph shows the same for nu

alarm rate. The first thing to notice is that the nuisance alarm rate for D(1) is generally h

than that of the other drivers. This is due to the D(1)’s higher lateral position standard 

tion, from TABLE 3-2. D(1) is also the driver who is helped most by using learned par

ters. However, there is a caveat to this result. As I discussed in Section 3.4.2, D(1)’s da

contaminated by another driver. While the subject claimed that the majority of the driving

done by him, there is the possibility that some of the D(1) data used in this analysis is a

that of another driver. If this is the case, it may be more accurate to claim that the diffe

seen in D(1)’s behavior are not solely due to individual characteristics. Rather, they m

some part be affected by weather conditions (D(1)’s trip was in winter, on occasionally s

roads), or the type of vehicle being driven.
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Figure 3-19: Combined results of the alarm performance comparison between the
AutoTrak, Generic, and Individual models, over different combinations of alarm
decision models.
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Ideally, the warning onset times within each driver would be identical over the differ-

ent combinations of training and models, allowing for a direct comparison of alarm rates.

However, this is not the case. There is a correlation between improved nuisance alarm rate

performance, and decreasing warning onset time. Therefore, it is possible that the extended

models do not improve overall performance -- rather, they just slide performance into an area

with lower WOT and NAR. Figure 3-20 shows the results of an experiment to determine

whether this is happening. I computed the lowest possible nuisance alarm rate (using individ-

ual training) over a range of desired warning onset times. That is, “For a warning onset t

1.2s, what is the lowest achievable nuisance alarm rate using different alarm decision

els?”. For any particular WOT, using a combination of curve cutting and local adapt

should provide the lowest nuisance alarm rate. From Figure 3-20, we see this happen

next lowest nuisance alarm rate should be from the curve cutting only case. While this 

for D(9), it doesn’t appear to hold for D(1), implying that modelling curve-cutting may no

very beneficial for this driver. There is further evidence for this in Figure 3-15, which sh

D(1)’s curve cutting behavior. The mean lateral position for right curves is actually slig

left of the mean lateral position for straight roads, indicating that D(1) does not curve 

that direction. Further, the curve cutting evidence figure, Figure 3-16, shows that D(1)’

sance alarm rate plateaus higher than the other drivers, which implies that including a

cutting term in the alarm decision model was not able to eliminate as many nuisance 

for D(1) as for the others.
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Figure 3-20: Comparison of Model Performance for Drivers 1 and 9.
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D(8) is the only driver for whom the AutoTrak parameters ever do better than either

the generic or individual trained parameter. When using the curve cutting and local adaptation

heuristics, AutoTrak has one fewer alarm than the individual model, over approximately 2.5

hours of data. When the differences are this small, it is difficult to claim that they are signifi-

cant.

When compared against roadside rumble strips and TLC, the FOD results based on the

full alarm decision model have a higher WOT than roadside rumble strips, while the alarm

rate is similar. As [Wood94] shows, roadside rumble strips has reduced the run-off-road acci-

dent rate by about 70%. Presumably, a larger warning onset time would reduce the accident

rate even further. In particular, D(1) is helped significantly by the trained FOD model over

roadside rumble strips. While the FOD WOTs are not as high as those provided by TLC, the

NARs are significantly lower. This shows that the new alarm decision model combines the

advantages of both roadside rumble strips and TLC to improve overall warning system effi-

ciency.

3.7.2 Parameter Analysis

This section looks at the parameters chosen by the individual training algorithm, and

compares them against AutoTrak. In particular, I focus on D(1), where the difference between

AutoTrak and trained performance is significant, and on D(9), where the difference is not so

large. From TABLE 3-7, we can see that the AutoTrak parameters on D(1) resulted in WOT =

1.48s and NAR = 7.08, whereas the trained parameters led to WOT = 1.44s, and NAR = 3.44

alarms/hour. This is a 50% reduction in nuisance alarm rate, with no real loss in warning onset

time. 

Equation (3-3) showed that there are an infinite number of FOD parameters which

provide the same warning onset time, assuming a constant lateral velocity during deviations.

The left-most plots in Figure 3-21 show the AutoTrak parameters, along with the set of

parameters which came out of the leave-one-out individual training method described in Sec-

tion 3.5.4. The training algorithm selects these parameters to match AutoTrak’s WOT, 

minimizing NAR. The first thing to notice is that all the parameters lie on a straight line.

corresponds with Equation (3-3), which suggests that parameters which provide equa
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performance lie on a line. The middle plot, which is a plot of all the parameters which result in

a WOT of 1.44s +/- 0.05s confirms this. The right-most plot shows the nuisance alarm rate

along the line of equal WOTs. The x-axis of this plot corresponds to different values of the

virtual lane boundary, V, along the line of equal WOTs. From this, we can see that when V is

low, the nuisance alarm rate is high, and that it decreases as V increases.    

The second observation is that the learned parameters lie above and to the right of the

AutoTrak parameters in an area where the lookahead time and virtual lane boundary are both

larger. The reason for this is D(1)’s greater lateral position variance. D(1) tends to cro

lane boundary during normal driving, which means that the AutoTrak parameters, which

a virtual lane boundary setting of 0.1m, generate nuisance alarms. D(1) exceeds th

boundary by 0.1m an average of 5 times per hour. This is reflected in the 7.08 alarm

nuisance alarm rate which the AutoTrak parameters produce.
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Figure 3-21: Parameter plots. The left plot shows the AutoTrak parameters along with the
learned parameters. The second plot shows ALL parameters which provide a WOT
equal to AutoTrak’s performance. The third plot shows the nuisance alarm rate
along the parameters of the second plot. The top row is D(1), the bottom row is D(9)
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A similar trend is observable in the bottom row of plots, which correspond to D(9).

Here, the learned parameters have higher V values than AutoTrak, but not as high as D(1). The

nuisance alarm rate along the line of equal WOTs for D(9) is very low, regardless of the value

of V. This implies that D(9) is a tighter driver than D(1), and this is confirmed by the lateral

position distributions and variances which were presented in Figure 3-6. 

The correspondence between Equation (3-3),which shows that linear changes in FOD

parameters combinations result in equivalent WOT, and the results in Figure 3-21, which

show this linear relationship using real data, indicate that the underlying assumption regarding

Equation (3-3) is valid. Namely, that during the portion of lane changes which the FOD model

depends upon (namely, between the trigger point and shoulder excursion point), lateral veloc-

ity is relatively constant. This implies that, when drivers change lanes, they tend to make an

initial steering input to start the vehicle on its trajectory, allow it to cross the lane, and then

counter-steer to stabilize the vehicle in the new lane. This is different from Godthelp’s

model, in which the driver executes a continuous sine-wave steering command. A ra

manual examination of lateral position and lateral velocity reveals that vehicles do not have a

constant lateral velocity over the entire lane change maneuver -- rather, the lateral veloc

increases until 1-2 seconds before the AutoTrak lane change event occurs, which is no

when the edge of the vehicle is about 0.5-0.8m beyond the lane boundary. This implies 

general, true lane changes are really somewhere in between Godthelp’s sinusoidal mo

a pure impulsive model. However, Figure 3-21 suggests that at the alarm trigger point t

eral velocity is relatively constant. The average lateral velocity at the trigger point is, in

the slope of the line in the middle plot of Figure 3-21. For D(1), the slope of the line is 0.

s. It is the same for D(9). Perhaps this is not so surprising, as most people presumably

range of comfortable lateral accelerations that they are willing to tolerate. Given the rela

short distances which are laterally traversed during a lane change, there is not much 

accelerate to high lateral velocity. 
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3.8 Summary

In this chapter, I present a Future Offset Distance (FOD) based alarm decision model,

along with a performance analysis on real world data taken from five drivers, collected during

the naturalistic data study, and compare this performance against two existing warning sys-

tems: roadside rumble strips and TLC. The FOD algorithm uses a linear prediction of future

lane position to determine when the driver is about to depart the lane. I present the results of

experiments on learning FOD parameters, and then add additional aspects of driver behavior

such as curve cutting and local, short term deviation modelling to the alarm decision model,

and show that this model, when applied to a lane departure warning system, reduces the num-

ber of nuisance alarms. I did a parameter analysis of these two additional factors, which

showed that there is a range of parameters which perform similarly, and also showed the

effects of extreme parameter values. Finally, a parameter analysis demonstrated that the lateral

velocity near the alarm trigger points is relatively constant.

Overall, this chapter has shown that learning FOD parameters can help in certain

cases, particularly when the driver has a large lateral position variance, and crosses the lane

boundary often, as D(1). For the rest of the drivers, the benefits of learning FOD parameters is

not conclusively demonstrated. These drivers all had relatively low lateral position variance,

and did not exceed the lane boundary as often as D(1). While there does seem to be an advan-

tage of either the generic learned model or the individual learned model over the AutoTrak for

these other drivers, this advantage is usually quite small, and is not consistent, which makes

significance difficult to judge. One issue which I believe affected performance was the

amount of data available. While I collected over 70 hours of data during the naturalistic data

study, only about 20 hours of data ended up being usable. Having 7 or 8 hours of data for each

driver might have produced a more conclusive answer regarding variability in driver behavior.

In Section 5.2, I present some lessons learned from this study, and suggestions for follow on

studies.
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CHAPTER 4 Driver Analysis

4.1 Introduction

In this chapter, I introduce the use of Memory Based Learning (MBL) for use as a

driver behavior visualization and comparison tool. While most analyses of driver behavior

involve looking at gross statistics such as means and standard deviations of lane keeping per-

formance and steering wheel control, MBL allows one to examine driver behavior in specified

situations. In particular, it is now possible to ask questions such as “Where is the driver

to be in 1 second if he/she is currently 10cm left of center and has a lateral velocity of 1

to the left?” This is important because it allows one to identify situations in which drivers

fer from each other, which could then be exploited by a warning system, or provide in

into warning system performance and driver behavior. 

The warning system results in the previous chapter give rise to two questions: 1

does learning FOD parameters produce better results for D(1), and 2) Why is D(1)’s o

performance so much worse than the other drivers? The answers to both these qu

involve looking at how the FOD warning algorithm behaves in different parts of the ve

state space (lateral position and velocity), and how the FOD parameter selection affects

ing system performance. MBL, combined with probability measures and information th

provides tools which can be used to answer the above questions. 
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The FOD warning algorithm I present in the previous chapter assumes that drivers

have a constant lateral velocity over the lookahead period. If this were true, then the actual

future lateral position of a vehicle would take a single value and be completely predictable.

However, this is not true. There is uncertainty associated with a kinematic prediction, due to

violations of the assumption of constant lateral velocity.

This uncertainty manifests itself through two main effects. The first and most common

effect is that, for a given vehicle state, the actual future lateral position does not take on a sin-

gle value. Rather, it takes on a distribution of values. This distribution is usually normal, with

the standard deviation related to FOD lookahead time. The further ahead one tries to predict

future vehicle state, the larger the standard deviation, indicating increasing uncertainty about

the prediction. 

The second effect is more interesting. I present results which show that the distribution

of actual (not predicted) future lateral positions of a vehicle in a particular state can be bimo-

dal, and that this bi-modality has an impact on warning system performance. For example,

when making lane changes, there is a period before the lane change during which drivers

could do one of two things: 1) Continue to drift away from the lane if their intent is to actually

make a lane change, or 2) Correct their steering, and come back to the center of the lane. Pre-

dicting a lane change in these situations can increase the nuisance alarm rate. This bimodality

in future vehicle state prediction presents a fundamental barrier to the performance of a warn-

ing algorithm based on just vehicle lateral position and lateral velocity. If a warning system is

too sensitive, then it triggers warnings when drivers may actually end up correcting their

behavior, which increases the number of nuisance alarms. This situation could be helped

with the use of lateral acceleration information, which would allow earlier detection of the

driver’s intent to continue drifting of begin correcting. In practice, this moves the proble

bimodal states earlier, but would not eliminate the effect.

This bimodality, and how it affects warning system performance, can be quan

using measures of uncertainty taken from information theory, along with false alarm pro

ity calculations. False alarms, remember, are alarms caused by an error in vehicle state

tion or sensor area, and are a subset of nuisance alarms, as defined in Section 1.2. I c

false alarm probabilities rather than nuisance alarm probabilities for two reasons: 1) To
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the heart of the appropriateness of using a 1st order FOD model, and 2) To avoid the issue of

whether a given nuisance alarm would really be considered a nuisance in an online system,

based on the definition in Section 1.2. As false alarms are a subset of nuisance alarms, any

increase in false alarm rate results in an increase in nuisance alarm rate. Therefore, although I

often discuss results in terms of their effects on nuisance alarm rate, calculations of false

alarm probability are used to justify the results.

I use the uncertainty and false alarm probability calculations to show that the likeli-

hood of triggering an alarm using trained parameters for D(1) is much less than the probability

using the AutoTrak parameters. Since the overall probability of triggering an alarm is lower,

the number of nuisance alarms is also lower. Similarly, I show that the behavior of D(1), who

has a high nuisance alarm rate, contains less information, and is therefore fundamentally less

predictable than the behavior D(9), who has a low nuisance alarm rate. This leads to better

warning system performance for D(9), and poorer performance for D(1).   

4.2 Memory Based Learning

In this section, I describe the use of Memory Based Learning, starting with an intro-

duction to the basics of MBL, along with details on how I have used it in this work, followed

by an example of system output. 

4.2.1 Introduction

Memory Based Learning (MBL) [4] is a machine learning technique which is similar

to techniques such as k-nearest-neighbor and locally weighted regression. MBL is most often

used as a predictor or classifier, where the answer to a query is a function of answers to past

training examples which are similar to the current query. This formulation requires that all

past training examples be stored in memory, with a trade-off in decreased query time. The

method used to store training examples often depends on the number of states in the problem.

When the number of states is low (<= three), arrays or basic tree structures may be used. For

higher dimensional state spaces, more advanced techniques such as KD-Trees [48] are used,

to decrease query time.
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For this work, the number of states is two: vehicle lateral position, and lateral velocity.

The input (or query) is a vehicle state vector. The output is a distribution of actual future lat-

eral positions, based on the past training data. The main idea is that instead of using a model

(such as a 1st or 2nd order kinematic model) to predict the future position of the vehicle, use a

lookup table to store the actual future lane position of the vehicle. Examining this output can

provide insight into driver behavior. 

4.2.2 Training Method

Because of the low dimensionality of the state input, I can represent the memory table

as a 2-D array, where one axis is lateral position, and the other axis is lateral velocity. The axes

are discretized into bins. I chose to use 0.05m for lateral position and 0.05m/s for lateral

velocity. Using a smaller discretization does not make sense, due to the levels of noise in the

naturalistic data. Using a larger discretization throws away information. The memory table is

created as follows: For each training point p, which comes from the naturalistic training data,

add the actual future lateral position for a particular lookahead time (by jumping forward in

the data), Lp’  to the appropriate bin. Iterate over all the training data. Figure 4-1 illustrates

this. After training, each bin, b, contains a list of lateral positions, which are the distribution of

future lateral position for the input state represented by b.

4.2.3 Memory Table Contents

Figure 4-2 shows the memory table after training on 2 hours of data from D(9). The x-

axis is lateral position, and the y-axis is lateral velocity. Darker areas indicate higher density

of training data. As expected, the central area is darkest, indicating that the driver spends most

time within a half meter of the lane center, and with lateral velocities less than 0.5m/s. There

are two areas circled in the figure -- these are areas of the state space which correspond to lane

changes. For example, the trajectories of left lane changes extend from the central area

towards the lower left portion of the state space, where both lateral position and lateral veloc-

ity are leftward. This correspond to a series of positions increasingly further to the left. The

lane changes mostly have little variance in the lateral velocity axis, indicating that after a cer-
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tain point, lane changes are roughly linear. Most of the lane changes occur at lateral velocities

between 0.5 and 1.0m/s, which is in line with the 0.7m/s calculation for D(1) and D(9) given

in Section 3.7.2.

4.2.4 Memory Table Density

As more training data is added, the state table becomes larger -- both in terms of the

amount of data it contains, but also in the amount of the state space which is covered. This is

because, as more and more data for a particular driver is added, the diversity of the state space

which the vehicle has been through increases. Figure 4-3 shows this. The top left plot shows

state space coverage after about one hour of training data, while the bottom center plot shows

coverage after about five hours of data. The non-central areas of the state space have now

been more fully explored. There is very little difference between the four and five hour case.
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Figure 4-1: Memory Based Learning Training and Output. The input is vehicle state, the output is
a distribution of actual future lane positions. 
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This shows that 1-2 hours of data does not adequately represent all the behaviors that a driver

may engage in. After about 4-5 hours of data, however, the density of the state space 

change as much, indicating a diminishing return. 

4.2.5  Alarm Sensitivity

In this section, I show how the memory table can be used to visualize how cha

the FOD parameters affects the triggering behavior of an FOD algorithm with 1st order vehi-

cle state prediction, which I use in Section 3.3. Figure 4-4 shows a set of sensitivity plot

x-axis is lateral position, and the y-axis is lateral velocity, which represents the state sp

the 1st order FOD algorithm. The non-white areas are parts of the state space which ha

resentation in the real data. The plots were generated using all of the nearly six hours 
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Figure 4-2: Memory table density after two hours of training. Areas in the state space
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for D(1). The black areas are parts of the state space where a 1st order FOD algorithm would

trigger and alarm, based on a 0.10m FOD virtual lane boundary, and an FOD lookahead time

in the range of [0.0, 2.5]s. The gray areas represent states which do not trigger an alarm. 
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Figure 4-3: Memory table density as amount of training data increases. Darker areas indicate
higher training density.
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1st Order Kinematic Sensitivity Plot D(9): Lookahead Time = 0.5 seconds
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1st Order Kinematic Sensitivity Plot D(9): Lookahead Time = 1.0 seconds
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1st Order Kinematic Sensitivity Plot D(9): Lookahead Time = 1.5 seconds
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Figure 4-4: 1st Order Sensitivity Plots. FOD Virtual Lane Boundary is 10cm, while the
FOD Lookahead Time ranges from 0.0s to 2.5s.
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For all the plots, the central areas, in which the vehicle is near the center of the lane

and has low lateral velocity, do not cause triggers. As we move towards more extreme lateral

positions and velocities, the FOD algorithm begins to trigger alarms. The top-left plot shows

the case when the lookahead time is 0.0s. Therefore, no actual prediction is done. An alarm

triggers when the vehicle actually is 0.10m beyond the lane boundary. With an assumed 3.6m

lane width and 1.8m vehicle width, this occurs when the vehicle’s lateral position is 1

Correspondingly, all the areas of the state space where the lateral position is greater tha

show triggers. 

As the FOD lookahead time changes, the trigger areas change shape. Howev

boundary between trigger and non-trigger areas is always a straight line, as triggering is

on a linear prediction. The slope of the line is related to the lookahead time, and the y

cept is related to the virtual lane boundary. Intuitively, this shows that as the lookahead t

increased (for a fixed virtual lane boundary), more and more parts of the state space

triggers. If the lookahead time is increased too much, parts of the state space which are

related to normal driving cause triggers, which leads to an increase in the number of nu

alarms. Similarly, if the lookahead time is too low, then triggers occur only in extreme cir

stances, which reduces the warning onset time. However, as I show in the next sectio

moderate lookahead times, such as used by AutoTrak, can cause triggers in areas of t

space where the right action is not predictable. 

4.2.6 Sample Distributions

After training is done on a particular driver, it is possible to visualize the distribu

of actual future lateral positions for a given input state. This will illustrate a fundamenta

itation of any warning algorithm which is based solely on instantaneous lateral positio

lateral velocity. Figure 4-5 shows three examples taken from D(9). Training was done t

ture future lateral position with a lookahead time of 1.0 seconds. The title of each graph 

the current vehicle state while the corresponding histogram shows the distribution of 

future lateral position, one second in the future, for all the training data of that state

dashed lines demarcate the physical lane boundary, assuming a vehicle width of 1.8m

lane width of 3.6m. In the following examples, I assume that there is no virtual lane boun
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Figure 4-5: Actual future lateral position distributions for D(9) for three cases: Normal driving
(top), lane change (middle), and “undecided” (bottom). The dashed lines indicate the
physical lane boundary, for a 1.8m. vehicle and a 3.6m. lane width. 
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 The top graphs shows the case of Lp = -0.35m and Lv = -0.10m/s. As the lookahead

time is 1.0s, 1st order kinematics would predict that the vehicle would be at -0.45m. In this

case, the prediction is accurate, as the peak of the distribution is near -0.45m, within measure-

ment error. However, there are a significant number of cases where the future lateral position

is either to the left or right of -0.45m, indicating that the driver was accelerating or decelerat-

ing, respectively. In this state, it is clear that (for a one second lookahead time), there is no rea-

son to trigger a lane departure warning alarm. 

The second case is a state which always leads to a lane change: Lp = -0.70m and Lv =

-0.75m/s. In this case, the vehicle is already very close to the left lane boundary, and is head-

ing towards it with a significant lateral velocity. As a result, the actual future lateral position is

always beyond the lane boundary (after one second), indicating a lane change. This indicates

that it would be appropriate to trigger a lane departure warning alarm when the vehicle is in

this state, as all the evidence shows that the driver actually does depart the lane in one second.

A 1st order kinematic algorithm would predict that the vehicle would be 0.55m past the lane

boundary, and would trigger an alarm.

In the third case, the proper action is not obvious. Here, Lp = -0.65m and Lv = -0.45m/

s. An FOD algorithm based on 1st order kinematics would predict that the vehicle would be

0.20m past the lane boundary, and would trigger an alarm. However, a significant portion of

the time, the driver actually countersteers, and comes back towards the lane center. If a warn-

ing system triggers in this case, it is guaranteed to be wrong a substantial percentage of the

time, resulting in nuisance alarms. In the next section, I show how to calculate and visualize

this uncertainty and show how it changes over time. 

4.2.7 Uncertainty

In the previous section, I showed that in certain areas of the state space, the actual

future lateral position distributions make the decision to trigger or not trigger an alarm diffi-

cult. Here, I use those distributions to present a measure of uncertainty and show how it

changes with FOD lookahead time.



Memory Based Learning 81
4.2.7.1 Alarm Probability Calculation

Consider a memory table, S, which is trained on a particular driver and contains a set

of bins, or states. Each state in S, si, contains a distribution of actual future lateral positions, as

shown in Section 4.2.6. The makeup of this distribution depends on both si and the FOD loo-

kahead time used in training. For the state si, (where si is a vector of lateral position and lateral

velocity), it is possible to calculate P(AT | si), which is the probability of triggering a true

alarm, AT, given that the vehicle is in state si. Here, a true alarm is defined as a correct predic-

tion - i.e., the future lateral position actually does lie beyond the virtual lane boundary. P(AT |

si) is computed by calculating the percentage of the lateral position distribution which lies

beyond the virtual lane boundary. This is simply:

(4-1)

where N(si)TA is the number of samples in the distribution which lie beyond the virtual

lane boundary, and N(si) is the total number of samples in state s. Given that an alarm has trig-

gered, the probability of it being false is:

(4-2)

Where a false alarm is an alarm which is due to noisy sensor data or modelling error.

Here, a modelling error is when the 1st order FOD prediction model predicts the vehicle will

be beyond the virtual lane boundary, but the actual future lateral position is inside the virtual

lane boundary. Using the above equation, P(AF), which is the probability of a false alarm

given that an alarm event, K, has occurred, can be calculated as:

(4-3)

Finally, the probability of being in a state which a 1st order kinematic vehicle state

predictor triggers an alarm is:

(4-4)

P AT si( )
N si( )TA

N si( )
------------------=

P AF si( ) 1 P AT si( )–=

P AN( ) P AF si( )P si K( )

i 1=

n

∑=

P K( ) N K( )
N S( )
-------------=
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where N(K) is combined mass of the distributions which lie in states where an alarm

would trigger, and N(S) is the combined mass of all the distributions in S. The next section

shows how basic information theory can be used to measure the amount of uncertainty in S,

and in following sections, I relate these metrics to alarm system performance for two of the

test drivers.

4.2.7.2 Entropy Calculation

If we consider the state si, which results in an alarm, as having two possible outputs,

AT or AF, then it is possible to compute the entropy of si, which is a measure of the uncertainty

(or, inversely, the amount of information) in si, as:

(4-5)

where p1 = P(AT | si) and p2 = P(AF | si), and H(si) is the entropy. If both outputs are

equally likely, then the entropy is 1, indicating maximum uncertainty, or minimum informa-

tion. Conversely, if one output has a probability of 1, and the other has a probability of 0, then

the entropy is 0, indicating minimum uncertainty, or maximum information.

It is also possible to calculate entropy for all the states where an alarm would trigger.

This gives a measure of uncertainty for a 1st order kinematic prediction in all the cases where

an alarm would trigger. I.e., if in state si, an alarm triggers, then H(si) is a measure of the

uncertainty of the decision to trigger. If a large majority of the actual future lateral position

distribution of state si lies beyond the virtual lane boundary, then the decision to trigger is cor-

rect with high certainty. Similarly, if a large majority of the distribution lies within the lane

boundary, then the decision to trigger is incorrect, with high certainty. The latter case is rare.

What is more common is a decision to trigger when the distribution is relatively evenly dis-

tributed within and beyond the virtual lane boundary. Computing H(si) for all i where an alarm

triggers provides a measure of the uncertainty of the decision to trigger an alarm. This value,

H(S | K), can be computed as:

H si( ) pilg pi( )

i 1=

2

∑–=
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(4-6)

where P(si | K) is the probability of being in state si, given that an alarm event, K, has

occurred. It is computed as:

(4-7)

where N(si) is the mass of the distribution in state si and N(K) is the total mass of all

the distributions in all states where an alarm triggered. 

In the next two sections, I apply these formulations to the naturalistic data of Drivers 1

and 9, the two drivers with the most data. I will show an information theoretic basis for the

differences in FOD alarm system performance between these two drivers, which was pre-

sented in Section 3.7.1. 

4.2.7.3 Within Driver Results

In this section, I present two results. The first shows how the conditional false alarm

probability and entropy of S changes as lookahead time changes (for D(1)), and the second

shows the differences between applying the AutoTrak FOD parameters to D(1), vs. applying

trained parameters to D(1).

Figure 4-6 shows entropy plots of S for D(1) over four different FOD lookahead times,

0.5s, 1.0s, 1.5s, and 2.0s. The virtual lane boundary used in all cases was 0.1m, which is what

AutoTrak uses. The lightest gray area in each plot indicates states which have data within

them. The darker areas indicate areas of higher entropy. As the lookahead time increases, the

areas of higher entropy grow, indicating increasing uncertainty. 

The central areas have low entropy, because in most cases, when the vehicle is in one

of those states, there is no impending lane change. Similarly, the bottom left and top right por-

tions of the state space, which correspond to lane changes, also have low entropy. In these

states, it is unlikely that drivers will correct their steering. Rather, they are most likely in a

lane change, and will continue along such a trajectory. 

H S K( ) H si( )P si K( )

i 1=

n

∑=

P si K( )
N si( )
N K( )
-------------=
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The areas with high entropy lie along the boundary between alarm trigger and no trig-

ger. In these areas, it is difficult to predict the future action of drivers, as a given trajectory

may either be part of a lane change, or just normal swerving. Therefore, the uncertainty is

higher, and attempts to trigger an alarm in these states lead to false and nuisance alarms. 

Table 4-1 shows P(K), P(AF), and H(S | K) for various lookahead times for D(1). As

lookahead time increases, so does P(K), which is the probability of being in a state which trig-

gers an alarm. This matches the observation in Figure 4-4, where the trigger areas grew with

lookahead time. With a 0.10m virtual lane boundary, a 3.0s lookahead time means that the

driver would be triggering an alarm 17% of the time. P(AF), the probability of a false alarm,

also increases with lookahead time. This indicates that predictions become less and less reli-

able as we try to predict further into the future. For a 0.10m virtual lane boundary and 1.0s

lookahead time, the odds are almost even as to whether a trigger is appropriate.
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Figure 4-6: Entropy plots for D(1). The lookahead time is 0.5s, 1.0s, 1.5s, and 2.0s,
respectively. Dark areas indicates states with high entropy.
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H(S | K), which is the weighted sum of the entropy over all the trigger states, starts to

increase with lookahead time, but then begins to decrease. The reason for the decrease is the

increase in P(K). As the lookahead time increases, an alarm triggers in more states. In most

cases, the driver doesn’t maintain a constant linear velocity over the lookahead tim

rather corrects and returns towards the lane center. Therefore, as lookahead time increa

likelihood of an incorrect trigger increases as well. After a certain point, alarms start tri

ing in states where the driver isn’t even remotely likely to actually exceed the virtual

boundary. Therefore, the entropy in these states is actually lower; i.e, we are nearly su

we are making a wrong decision.

Figure 4-7 shows kinematic sensitivity and entropy plots for two difference case

the application of the AutoTrak FOD parameters to D(1), and 2) the application of one 

trained FOD parameters to D(1). The trained FOD parameters are lookahead time = 2

virtual lane boundary = 0.9m. These parameters were picked from Figure 3-21, and p

the same warning onset time as the AutoTrak parameters, with a lower nuisance alarm 

the trained parameters in Figure 3-21, the parameters I picked are furthest away

AutoTrak. I did this to emphasize the difference between the trained parameters a

AutoTrak parameters. Why is the nuisance alarm rate lower? In Section 3.7, I claimed

was because the trained parameters allowed the driver to swerve beyond the lane bo

FOD 
Lookahead 

Time (s)
P(K) P(AF) H(S | K)

0.0 0.02 0.00 0.00

0.5 0.03 0.26 0.51

1.0 0.05 0.47 0.64

1.5 0.07 0.60 0.68

2.0 0.10 0.72 0.62

2.5 0.13 0.77 0.56

3.0 0.17 0.82 0.50

TABLE 4-1 : Alarm Probability, False Alarm Probability, and Entropy 
Calculations for D(1)
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more than the AutoTrak parameters did. Figure 4-7 and Table 4-2 show that this is true. The

table shows the alarm probabilities, conditional false alarm probabilities, and entropy of the

AutoTrak and trained parameters on D(1). While the trained parameters have a slight reduc-

tion in false alarm probability and entropy, the big difference is in P(K), the probability of

being in an alarm state. For the trained parameters, P(K) is much lower. This means that the

trained FOD parameters are overall less likely to cause a trigger than the AutoTrak parame-

ters. This is because the trained parameters rotate the decision boundary to avoid areas of high
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Figure 4-7: Alarm Trigger Sensitivity and Entropy plots for AutoTrak and Trained
FOD parameters, applied to D(1). 

Parameter P(K) P(AF) H(S | K)

AutoTrak 0.04 0.36 0.59

Trained 0.01 0.35 0.53

TABLE 4-2 AutoTrak vs. Trained probabilities and entropy for D(1)
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lateral position and low lateral velocity, allowing D(1) to swerve more. Therefore, nuisance

alarms are less likely. However, for a range of lateral velocities around 0.7m/s, the trigger

point (and corresponding warning onset time) is the same as AutoTrak.

This reduction in nuisance alarms comes at a cost of later detection of slow drifts.

From the sensitivity figures, we can see that the vehicle has to drift further away from the lane

center before an alarm triggers in low lateral velocity cases. For instance, for a lateral velocity

of 0.20m/s, AutoTrak would trigger when the vehicle is about 0.90m away from the lane cen-

ter. However, the trained parameters would trigger at around 1.3m. In the opposite direction,

the trained parameters would trigger earlier than AutoTrak for high lateral velocity. What is

happening is that the trained parameters pivot the boundary line about a point. This point is

equal to the average lateral velocity during lane changes. The direction of the pivot (towards

decreasing slope) maintains performance in the region of lane change lateral velocity, but

changes performance outside that region. The lower slope of the trained parameters actually

increases the variance of the trigger point, but, around the region of lateral velocities which

encompass most lane changes, the trigger point does not vary much. This increased variance

provides the benefit of reduced nuisance alarms (alarms which are not lane changes): 106 for

AutoTrak, vs. 45 for the trained parameters (when using an alarm decision model which does

not account for curve cutting or local adaptation). This is a better than two-fold reduction in

nuisance alarms, and is due to the lower probability of being in an alarm state. 

4.2.7.4 Between Driver Results

The probability and entropy measures described above can also be used to investigate

differences in FOD alarm system performance between drivers. In particular, I concentrate on

D(1) and D(9). There is more data available on these two drivers than on any of the others,

and their warning system performance is quite different. Using the full alarm decision model,

applying the AutoTrak parameters to D(1) results in 37 nuisance alarms over nearly 5.5 hours,

whereas applying the same parameters to D(9) results in only 6 nuisance alarms over nearly 7

hours. However, the warning onset times are similar. 
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Why is this? Figure 4-8 and Table 4-3 provides some insight into the reason for D

improved performance. Figure 4-8 shows entropy plots for D(1) and D(9), using Auto

FOD parameters. There are fewer areas of high entropy for D(9), as compared to D(1

means that in general, kinematic predictions for D(9) tend to have higher certainty.

higher certainty could indicate a higher certainty of being wrong. However, Table 4-3 shows

that this is not the case. The conditional probability of a false alarm, P(AF), is one-third that of

D(1). This indicates that when an alarm triggers, it is much less likely to be a false (and

fore nuisance) alarm for D(9), than for D(1). This is reflected in the entropy measures a

where D(9)’s entropy is significantly lower than D(1). 

Driver P(K) P(AF) H(S | K)

D(1) 0.04 0.36 0.60

D(9) 0.02 0.12 0.24

TABLE 4-3 : Entropy and Probabilities for D(1) and D(9), using AutoTrak 
FOD Parameters.
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Figure 4-8: Entropy Plots for D(1) and D(9). Dark areas are areas of high entropy
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D(9) is also less likely to be in a trigger state than D(1). This is because in general D(9)

doesn’t weave on the road as often or as excessively. Therefore, this subject doesn

alarm states as often as D(1), and when he does, it is most likely while changing lanes

in contrast, is in states which trigger alarms much more often, even when not changing

Therefore, D(1) has a higher nuisance alarm rate. 

Figure 4-9 shows an entropy plot which corresponds to subtracting the entropy a

state, si, of D(9) from the entropy of the corresponding state in D(1). Dark regions ind

areas where D(1)’s entropy is greater than D(9), and light areas indicate the opposit

comparison was only done on states which had data in both D(1) and D(9). Overall, the

more dark areas than there are light, and the magnitude of the difference indicates th

has higher entropy than D(9), in a larger number of states. The average difference o

states where there is any difference in entropy is 0.18, indicating that on average, 

entropy is higher. 
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Figure 4-9: Entropy plot of D(1)-D(9). Dark areas are
where D(1)’s entropy is greater, white areas,
where D(9) is greater.
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Left lane changes and deviations seem to be an area where D(1) and D(9) greatly dif-

fer. D(1)’s entropy around the area Lp = -1.0m and Lv = -0.5m/s is much higher than D(9)’s

When near that state, an alarm is almost always appropriate for D(9), as seen by D(9

entropy in that area. D(1), however, tends to be in that state even during normal driving,

increases the uncertainty and nuisance alarms. 

4.3 Summary

In the above sections, I introduce a new method, derived from memory based lea

to visualize and analyze driver behavior. This allows me to show that in certain areas o

cle state space, the likely future lateral position of the vehicle cannot be predicted with

accuracy. I use this, along with calculations of false alarm rate and entropy, to examin

questions: 1) Why does training FOD parameters help Driver 1’s performance, and 2)

does Driver 1 have many more nuisance alarms than Driver 9?.

The answer to the first question involves looking at the states in which an alarm w

trigger, for both the AutoTrak FOD parameters, and the trained parameters. As a 1st order

vehicle state predictor is used, the boundary, in vehicle state space, between trigger sta

non trigger states is linear. The slope and location of this boundary is determined by th

parameters. The trained parameters end up pivoting the boundary line about a poin

0.7m/s, which is the average lateral velocity during D(1)’s lane changes. The result of th

oting is to change previous trigger states with high entropy (and thus high nuisance a

into non-trigger states, which reduces the overall nuisance alarm rate. This, however, co

the expense of trigger point variance. With the trained parameters, the location (rela

lane center) of alarm triggers changes with lateral velocity more than it does with AutoTrak.

This trade-off suggests an area for future human factors research. Namely, w

more important, alarm system predictability, or low nuisance alarm rate? For most dr

Table 3-7 shows that with an enhanced alarm decision model which accounts for curve 

and local adaptation behaviors, the AutoTrak parameters provide a low nuisance alarm
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while maintaining predictability. For certain types of drivers, who weave excessively, training

FOD parameters provides a benefit, at the expense of predictability. The answer to the above

question is beyond the scope of this thesis, but the question is still an interesting one.

I also use the tools I develop to explore differences in behavior between two drivers

who have very different alarm system performance. D(1) has many nuisance alarms, while

D(9) has few. There are two main differences: nuisance alarm probability, and entropy. These

two differences are related. D(9) has a lower nuisance alarm probability than D(1). I.e., given

that an alarm triggers, the alarm is much less likely to be a nuisance alarm for D(9) than it is

for D(1). This leads to a difference in entropy levels as well. D(1) enters states that normally

trigger an alarm even during the course of normal driving. This increases the uncertainty of

the trigger. I then compare the entropy of D(1) and D(9), and show that both drivers differ

when making left lane changes. D(1) seems to weave a lot, making those lane changes hard to

accurately predict. 

This prediction is mainly difficult due to the limited state information which is avail-

able. Lateral position and lateral velocity do not provide enough information to accurately

predict future vehicle state over long periods of time. This is because drivers change their

steering behavior over longer lookahead times, violating the constant lateral velocity assump-

tion. One possible solution is to use additional state information, such as lateral acceleration.

Lateral acceleration could provide information about when the driver’s lateral veloci

increasing or decreasing, which could help filter out alarm triggers that occur during n

driver behavior.

Another possibility is to use Fuzzy Logic methods [34] to account for variability

driver behavior. It would be possible to conceive of classifying drivers into categories su

“very tight,” “tight,” “loose,” or “dangerous” based on membership sets representing t

categories. Lateral position and lateral velocity could be used to create the membersh

based on training data. Alternatively, the cells in the MBL table represent quite small ar

state space. A fuzzy combination of nearby states could allow one to reduce the granul

the state table, thereby reducing noise, while maintaining accurate representation of

future position. 
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CHAPTER 5 Conclusion

5.1 Thesis Summary and Contributions

The major contribution of this thesis is the development and evaluation of a warning

algorithm with a novel alarm decision model, trained to a particular driver, and evaluated on

real world driving data, as mentioned in my thesis statement in Section 1.1. This decision

model determines when the driver is in danger of a run-off-road (ROR) crash, based on the

use of lane changes as simulated substantial lane departures. This model is then used in the

Future Offset Distance (FOD) warning algorithm, along with a linear vehicle state predictor,

to reduce nuisance alarms while maintaining adequate warning time. 

The vast majority of the previous work has concentrated on data collected on driving

simulators. While simulators have advantages, their fidelity is often questionable, which

makes interpreting results difficult. My use of real world data means that the results presented

in this thesis can be expected to carry over to on-line lane departure warning systems

(LDWS). Additional contributions include a methodology for the collection of controlled and

naturalistic real world driving data, and a low-level analysis of the performance of a LDWS

on real world data. 

In chapter 2, I describe two data collection efforts, which resulted in a combined 100

hours of driver data. About 50 hours of this data is high quality and usable. Of the 50 hours,

30 were collected under controlled circumstances. The route, time of day, vehicle type, and

experimenter presence were all the same. As this data was collected on NavLab 8, a sen-
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sorized minivan, there is also information on surrounding traffic, which was obtained by radar

sensors, along with information on the driver’s steering input. I also collected 30 hou

video of the driver’s view, which would be valuable to future researchers who wish to 

use of this data.

 The other 20 hours of high quality data are of drivers behaving naturally, with no

straints on vehicle route, road conditions, or experimenter presence. While the Carnegi

lon Research Institute has collected long-term data on truck drivers, no other stud

collected as much unconstrained data on passenger car drivers. This data has bee

valuable in the development and evaluation of my individually trained warning algorithm

This warning algorithm, along with its associated alarm decision model, is the foc

Chapter 3. The previous work in this area has either been too simple to capture realistic

behavior, such as the Roadside Rumble Strips and Time to Lane Crossing (TLC), or c

cated enough that their ability to work with realistically noisy data is unproven and que

able. These systems, which I describe at the beginning of the chapter, suffer from eith

warning onset time, or high nuisance alarm rate. I determine this by applying the roa

rumble strips and TLC algorithms to the naturalistic data described in Chapter 2. For this

uation, and all the others, I substitute lane changes for true dangerous deviations for thr

sons: 1) the data did not contain any actual crashes, 2) lane changes are similar to run-

incidents caused by unintended steering wheel movement, and 3) the data contains o

lane changes. 

I then introduce a new warning algorithm, Future Offset Distance (FOD), which 

a virtual lane boundary parameter, allowing drivers to weave more aggressively withou

gering an alarm. This is followed by a description of two algorithms to train the FOD m

The first trains the FOD model on a collection of drivers, and the second trains the mo

an individual driver. This is done to determine whether training for an individual driver 

vides any benefit over training on an “average” driver, which is a combination of drivers

results of these experiments are in terms of Warning Onset Time (WOT) and Nuisance 

Rate (NAR), which are defined in Section 1.2. Intuitively, WOT is the amount of time dri

would have to react to a warning, before their lateral position exceeds the physica

boundary by a pre-defined (currently 3ft) threshold. These results are compared agai
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hand-tuned FOD parameters which Pomerleau’s AutoTrak LDWS uses. The results s

significant improvement in NAR with a minimal drop in WOT for one of the five drive

when using individually trained parameters, and comparable performance on the other 

The FOD parameters can only be trained to find an average best fit for a part

driver. It does not account for local deviations in driver behavior, due to road geometr

presence of other vehicles or obstacles, and changes in driver behavior over time. Ther

model two additional driver behaviors which are often anecdotally observed, but until

have not been quantified. These are curve cutting, and local deviations. 

The first, curve cutting, is the tendency for drivers to shift towards the inside 

curve. This increases the overall radius of curvature of the vehicle, and reduces the

forces, increasing occupant comfort. I use the naturalistic data to show that drivers have

dency to cut towards the inside of a curve, and that the amount of curve-cutting 

inversely with the radius of curvature. I use this evidence to add a term to the alarm de

model to account for curve cutting, and find appropriate parameters for the term by exp

the parameter space. Modelling curve cutting, it turns out, has an overall beneficial imp

warning system results, by reducing the number of nuisance alarms without adversely 

ing the warning onset time. The warning time could be reduced if drivers drift off the inside o

a curve. However, such accidents are four times less likely than accidents due to drift

the outside of a curve. 

The second driver behavior I add to the alarm decision model accounts for shor

changes in the vehicle’s mean lateral position. These short term shifts can be caused b

reasons, including the presence of adjacent vehicles, construction zones, or change

driver’s state. The naturalistic data does not contain information on any of these fa

although inspection of the data reveals stretches where drivers temporarily shift their

lateral position. Appendix C provides some evidence for this phenomenon in the prese

adjacent vehicles using the NavLab 8 data. To account for short term variations, I ad

term to increase the virtual lane boundary on the side to which the vehicle has shifted

has the effect of giving the driver more leeway on that side. It avoids situations where a

in the left lane may be passing a truck, which causes the driver to shift to the left, whic
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gers an alarm, and sends the driver back to the right, approaching the truck, and possibly caus-

ing a crash. Running the LDWS experiments on the stored datasets with this complete alarm

decision model further lowers the nuisance alarm rate, while sparing the warning onset time.

The overall results of Chapter 3 show that improving the alarm decision model causes

an overall improvement in Future Offset Distance LDWS performance. Individually training

this model helps for one of the five drivers, D(1), while its effects on the other four drivers are

smaller. Part of the reason for this is that the other drivers do not have nearly as many nuisance

alarms as D(1), so there is not as much room for improvement. Moreover, there are only two

drivers for whom I had more than 5 hours of data, D(1) and D(9), and D(9) has a very low nui-

sance alarm rate in nearly all cases. Performance of the individualized model for other drivers

may have been better had there been more data available.

Chapter 3 raises two questions: 1) Why does an individualized FOD model improve

LDWS performance for D(1), but not other drivers, and 2) Why does D(1) have so many more

nuisance alarms than other drivers? Chapter 4 answers these questions, and brings forth inter-

esting insight into the behavior of linear warning algorithms and alarm decision models. 

To answer these questions, I use a memory-based learning (MBL) framework, which

allows me to look at driver behavior at a much finer scale than others have done in the past. To

do this, I discretize the vehicle state space (lateral position and lateral velocity), and create

bins for each state vector. These bins contain the actual future lateral position of a vehicle

which is in a state corresponding to the bin’s state vector, after a specified lookahead

After adding hours of data into this memory table, each bin contains a distribution of a

future lateral position. If this distribution contained a single value, that would be evidenc

future vehicle state is completely predictable. However, the distributions generally h

gaussian shape, indicating that there is uncertainty in predicting future driver position. I

tain areas of the state space, the distributions are bimodal, due to the driver either m

“corrective” action to avoid a road departure, or continuing with a lane change. This bim

ity makes accurately predicting future vehicle state very difficult in certain cases.

I use an FOD sensitivity analysis, on top of the MBL framework, to examine w

trained model improves performance for D(1), but not for D(9). This analysis demons

which areas of the vehicle state space would cause a trigger given a particular set o
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parameters. The trained parameters, it turns out, allow for more swerving than that AutoTrak

parameters, by not triggering as early when the vehicle crosses the lane boundary at low lat-

eral velocities. The trained parameter’s response to higher lateral velocity deviations, s

during lane changes, is mostly unaffected, resulting in an equivalent warning onset time

D(1)’s excessive swerving has another effect on LDWS performance, which is

immediately obvious. This effect is higher uncertainty in future state prediction, relativ

other drivers. To quantify this, I use an entropy metric, which is a measure of the amo

information or uncertainty in a distribution. I calculate an entropy measure for each ve

state for D(1) and D(9), measuring the uncertainty of a decision to trigger an FOD a

based on the probability of the actual future lateral position being beyond the virtual lan

boundary (which, remember, is the criteria for triggering an FOD alarm). This analysis s

that D(1) has an overall higher uncertainty than D(9). This means that the decision to 

an alarm is wrong more often for D(1) then for D(9), which leads to more nuisance al

This presents a fundamental limit to the performance which can be achieved for D(1).

The main conclusions which can be drawn from this thesis are: 1) Real world d

important for the evaluation of lane departure warning systems. 2) State of the art w

systems, such as AutoTrak, perform pretty well. However, it is possible to improve pe

mance for drivers who weave a lot through individual training and an improved alarm 

sion model. 3) The use of a simplified vehicle state space, namely lateral position and 

velocity, while convenient in terms of lane tracker design, may not provide enough info

tion to help all drivers. Finally, 4) A great deal of additional driver data is needed to defen

statistical significance of the results presented here. These conclusions lead me to reco

dations for future work, which is presented next. 

5.2 Future Work

Here, I present directions for future work in two areas: Data collection and field e

ation studies, and warning system design. 
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5.2.1 Data Collection and Evaluation

5.2.1.1 More Data

The lack of data is a limiting factor in evaluating the performance of trained lane

departure warning algorithms. While two of the five available drivers had over five hours of

data, the other three drivers only had 2-3 hours of data. This means that there may not have

been enough training data to learn FOD models for those drivers, and that medium scale vari-

ations (on the order of a half hour or so) in behavior could have a significant impact on perfor-

mance. With more training data, these variations would not have as great an influence on the

results. For example, consider the leave-one-out training algorithm described in Section 3.5.4.

If there are two hours of data available for a subject, then for any given half hour test set, the

training set is 1.5 hours. If a particular half hour test set has a significantly different mean lat-

eral position or lateral position variance than the training set (due to road conditions or

weather, perhaps), then the trained parameters could perform poorly on the test set. With sig-

nificantly more data (5+ hours), this effect is not as strong as with only two hours of data. 

Ideally, it would be nice to have 8+ hours of data per driver, over the course of a week

or more. This would allow investigations into how driving behavior changes over a larger

time scale, along with looking at how any observed long term trends vary between drivers.

Similarly, it would provide a firmer answer for the question of whether training once is suffi-

cient for a particular driver, or whether a longer term adaptation of FOD parameters is neces-

sary. While the naturalistic data was collected over multiple days of driving, the data

collection system could not timestamp the data, so it was impossible to determine when the

data was collected. Moreover, the lack of data means that at best, only 3 hours or so of data

was collected per day. Having more data would be a benefit in assessing the statistical signifi-

cance of the results presented in Chapter 3. 

5.2.1.2 More Subjects and Larger Demographics

Although the naturalistic data collection effort resulted in 70 hours of data from nine

drivers, a majority of the data turned out to be unusable, due to a combination of system errors

and low-confidence data. In the end, only five drivers provided any usable data at all. These

five drivers are not enough, as mentioned above, to determine statistical significance. How-
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ever, the experimental design I put forth in Section 3.4, applied to long term (1-2 weeks) data

on a larger number of drivers could provide a definitive answer to what percentage of drivers

could be helped by an individually trained FOD model, and what characteristics such drivers

need to possess.

All nine drivers who volunteered for the naturalistic study, and 18 of the 20 NavLab 8

subjects are members of the CMU Robotics Institute. The two subjects in the NavLab 8 study

who are not members of the Robotics Institute are still employees of CMU. This is an insur-

ance requirement, so recruiting subjects from outside of CMU is not possible. Therefore, the

demographics of the subjects are fairly limited. All were professionals in the 24-45 age group.

There are no teenagers or senior citizens in the subject pool. These two groups tend to have

higher accident rates; teenagers because of inexperience, and senior citizens due to age-related

issues such as poor eyesight and reduced reaction time. It is likely that including subjects from

those groups would reveal greater variance in driver behavior. Similarly, including people

from non-academic backgrounds, especially people who do not often drive on long trips,

would provide interesting insight into driver behavior.

5.2.1.3 More State Information

AutoTrak makes three independent vision-based measurements: lateral position, lane

width, and boundary type. This information is transformed to provide other state variables

such as lateral velocity, and vehicle relative heading. Longitudinal velocity is available when a

GPS option is installed, but not all the systems used in the naturalistic study had this option

available.

Having more state information would increase the accuracy of the FOD state predic-

tor. In Chapter 4, I show how the actual future lateral position for a particular state can be

bimodal, where each mode reflects the driver’s choice to depart the lane (in a lane chan

correct and re-center the vehicle. This bimodality presents a limitation on the certainty 

warning algorithm which only uses instantaneous lateral position and lateral velocity info

tion. A system which had access to lateral acceleration would be able to distinguish be

the two cases earlier, and only trigger an alarm when the driver was actually departi
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lane. This is because when the driver is correcting, acceleration should be less than zero,

whereas when the driver is departing the lane, acceleration should be close to zero (for slow

drifts or constant speed lane changes), or increasing. 

Generating reliable lateral acceleration information is, however, quite difficult. The

main problem is that lateral acceleration needs to be computed relative to the lane edge.

Accelerometers would provide acceleration information along one of the vehicle axes, and

this axis may not be perpendicular to the lane edge. This is because accelerometers measure

acceleration along an inertial frame, whereas what is required is acceleration in the 

coordinate frame. That is, if the driver were perfectly tracking the road, and following a c

then an accelerometer would still report acceleration, even though the actual acceleratio

tive to the lane edge is zero. This means that very accurate registration is required, to c

the yaw of the vehicle relative to the road, and the upcoming road curvature. While Aut

does provide heading information, it is based on the lateral position measurements, 

noise in this measurement would carry over to the heading, and would be compounded

noisy outputs of most accelerometers. There is a further problem with the use of accele

ters, which is caused by superelevation. Superelevation is the bank in a curve, which is 

minimize slipping. This banking changes the acceleration measurements, as now a frac

g is introduced. It would be possible to factor this out, except that the amount of super

tion between curves is generally not constant, and is usually undocumented. 

An alternative is to differentiate the lateral velocity output. This would provide ac

eration information in the appropriate coordinate frame. However, the lateral velocity o

is the derivative of the lateral position measurements. Differentiating the lateral position

mates twice introduces a great deal of noise, making the signal useless.

AutoTrak does provide other information, which, in an online system, can be us

suppress nuisance alarms. AutoTrak can distinguish between solid and dashed lane

aries. Therefore, warnings could be suppressed if the vehicle were crossing a dash

boundary, indicating that it was changing lanes. Similarly, it is possible in the current ve

of AutoTrak to detect the state of a vehicle’s turn signal, and suppress alarms if drive
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indicating that they are changing lanes. I did not use lane boundary information because I

wanted to trigger on lane changes, as they were my surrogate true alarms. In an online system,

however, suppressing alarms (or altering their modality) during lane changes is useful.

Another type of state information which would be very useful would be information

on adjacent vehicles. While this is impossible to get with forward looking vision systems,

other sensors, such as radar, can be used to detect other vehicles surrounding the driver. This

is because drivers tend to change their lane keeping behavior when passing other vehicles, or

when there is another vehicle along side them. I attempt to account for this in Section 3.6.2

with a local disturbance model, which adapts the virtual lane boundary based on an updated

estimate of the driver’s mean lateral position. However, having information about surrou

vehicles, or the presence of construction zones would be quite useful. While adding rad

sors to vehicles can be expensive for production model vehicles, current high end ca

starting to include an adaptive cruise control option, which makes use of a front mo

radar to slow the vehicle down to prevent collisions. Similarly, new Ford Windstars ha

rear collision warning option, for short range obstacles such as when parallel parking

conceivable that given a proven benefit, auto manufacturers may someday include sid

ing radars. These radars only need to be able to detect the presence of another vehi

therefore would be cheaper than adaptive cruise control radar. They could also serve 

duty as a blind spot warning sensor, to prevent drivers from changing lanes or mergin

overtaking vehicles. 

5.2.1.4 More Road Information

AutoTrak provides lane width and road curvature information, which is useful. H

ever, other information, such as the lack or presence of a shoulder, and shoulder width

be nice to have. For my experiments, I assume a shoulder width of three feet. In many

the actual shoulder width is greater, particularly adjacent to the right lane. A wider sho

can influence driving behavior. There is evidence [57] that when driving on rural roads, w

usually have a very small shoulder, or no shoulder at all, people tend to drive more car

and with a lower lateral position variance. It is possible, although not proven, that wh

highways with large (say greater than 1.5 meters) shoulders, drivers may drive more lo

as there is little danger of drifting off the road. My experiments do not account for that 
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because shoulder width information is not available. It is possible that such information will

be available in the future, as GPS-registered road maps are becoming more popular and vision

systems are becoming more capable. Current road databases do not contain shoulder width

information, but if and when that changes, taking advantage of that information would pro-

vide a benefit. 

5.2.1.5 Image Data

During the NavLab 8 study, I collected video of the road ahead during all the trials.

During later analysis, this was useful to have, as I could look through the data, find interesting

events, then look at the tape to see what was actually going on. I could not collect video infor-

mation on the naturalistic study subjects. It would be useful to be able to log image data, either

as video, or as still pictures, particularly in “interesting” cases, such as when the Aut

alarm triggers. It is now possible to collect low resolution digital images onto flash card

AutoTrak, but at the time of the naturalistic study, this capability did not exist. If images c

be captured every time the system believes the driver is near to crossing or has cros

physical lane boundary, then the areas where most nuisance alarms occur would be ca

and could be looked at in further analysis, to try to determine whether there were any e

ating circumstances for the trigger. 

5.2.1.6 Lane Changes as Surrogate Lane Departures

One difficulty in trying to prevent run-off-road (ROR) crashes is that they are q

rare. Therefore, finding positive examples of ROR crashes is difficult, necessitating the 

alternative events to simulate the crashes. I chose to use lane changes, due to their sim

certain types of ROR crashes, and the large number of lane changes which most driver

during a long stretch of driving. Lane changes, however, are not ROR crashes, and it likely

that there are factors in vehicle trajectory and driver behavior (such as drowsiness) 

ROR events which do not exist during lane changes. 

Future work will have to address this issue, by attempting to capture true ROR e

In the 110 hours of data I have collected, there is not a single ROR crash. To have any 

collecting data on true crashes, it is likely that data collection efforts have to increase b

eral orders of magnitude or more. Having a great deal more data would also increase th
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ber of significant departures, which would be useful to have. It would also be useful to have

video of the drivers’ faces, to see what their state is during interesting events, or perhap

ing wheel input, to determine whether they made a steering correction. This could help

mine whether an alarm is appropriate in a particular situation. 

5.2.2 Warning System Design

5.2.2.1 Explicit Dynamic Models

In this thesis, I have not used any explicit modelling of the driver, vehicle, or ro

use a purely data-centric approach. However, it is possible to build actual driver mode

vehicle models, fit them to actual data, and use forms of parameter analysis to det

whether differences in model fit are statistically significant. Pillutti [58] has done this for 

ulated data. One advantage of this is that is could perhaps work with less training data (

ing drivers can be modelled as stationary processes), and could be used to develop m

driver and vehicle interaction explicitly, rather than implicitly, as I do now.

One of the difficulties in this approach, however, is the effect of road condition

vehicle model performance. It is not enough to have just a good vehicle model. Rathe

critical to have data on how the vehicle interacts with the road surface, and this re

weather information on rain or snow precipitation, or the presence of ice on the road, o

the type of material used to construct the road.

5.2.2.2 Reaction to Warning

In this thesis, although I make references to human factors issues, I do not a

them directly. One of the most important factors is how a driver would react to an a

There are many possibilities. The “unsafe nuisance alarm” definition is an example of a

tive outcome. It is possible that a loud audible alarm could cause drivers to overreac

place themselves in dangerous situations. This is obviously an undesirable outcome.

has been unpublished work by the Vehicle Research Test Center (VRTC), using their

CAR system, which shows that initially, drivers may freeze for up to two seconds after 
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ing an alarm from an unknown source. They spend the time looking for the source of the

alarm. For a lane departure warning, freezing for two seconds could be enough time for the

driver to completely depart the road, or enter a situation from which a recovery is impossible. 

5.2.2.3 Warning Modality

An audible alarm is not the only way to warn a driver of an impending lane departure.

Haptic warnings are another modality which could be beneficial to explore. The previous

work in this area [2] [54] [72] has usually used an airplane “stick shaker” model, w

nudges or vibrates the steering wheel in the direction opposite the lane edge, alert

driver to turn in that direction. It is possible that such a method would be more intuitive 

driver, and not cause the initial confusion that the VRTC group has reported for au

alarms. The Odetics warning system, which is scheduled to be offered on Mercedes

trucks this fall, simulates a rumble strip sound in the direction of the departure, taking a

tage of the fact that most people, especially truck drivers, have experienced rumble s

the past, and know how to react to them. The main problem with haptic interfaces is tha

require vehicle modification. An audible system such as AutoTrak has an advantage th

easy and cheap to install, as no vehicle modifications are necessary. However, there 

advantages to haptic warnings over audible warnings, which need to be explored. 

Another issue, which is related to warning modality, is warning intensity. Curre

AutoTrak provides two levels of warnings. The first and lowest level optionally triggers w

the driver changes lanes. This is mainly included as a “comfort” feature, so the driver k

the system is working. The second level of alarm is louder and more intensive, and 

when the driver deviates onto the shoulder. It is possible to imagine a different hierarc

warnings, which trigger based on the perceived danger. The memory based learning ap

provides a mechanism for doing just that. Entropy measurements of the training data co

used to determine certainty estimates of the decision to trigger a warning. When the ce

is low, then the system is unsure about the safety of the situation, but realizes that ther

potential (based on past training data) for danger. In this case, a small visual warning co

triggered, possibly on a heads-up display in front of the driver. If the deviation continued

the certainty of danger increases, and more intrusive warnings could be triggered, culm

in a loud audible alert similar to AutoTrak’s. Such a system may have an overall effe
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reducing audible alerts, as drivers could take corrective action at lower certainty levels. This

could change the role of the warning system to one which is more advisory. The driver is free

to ignore unobtrusive visual warnings, but only up to a point. It is also likely, although not

demonstrated, that nuisance visual warnings would be less annoying that nuisance audible

warnings, which could increase driver acceptance of an LDWS. 

5.2.2.4 Predictability vs. Optimality

The experimental results I describe in Section 3.7, based on roadside rumble strips and

TLC, have either low warning time, or high nuisance alarm rate, respectively. Similarly, for

drivers who weave a great deal, the FOD algorithm can produce an unacceptable number of

nuisance alarms. Based on the results of D(1), it appears likely that learning FOD parameters

can improve the nuisance alarm rate. However, the “fixed parameter” methods have a p

advantage over an individually trained FOD algorithm with an advanced alarm devi

model; namely, the behavior of fixed parameter systems is highly predictable. At the ex

there is the roadside rumble strip system. Drivers know that when their tire hits the ru

strip, a warning will sound. This is entirely predictable, and could provide a measure of

fort. Similarly, AutoTrak is tuned to sound a warning when the vehicle’s tire is just abo

cross the lane boundary. If drivers are able to predict the behavior of the warning system

may feel more comfortable with it. In the case of training FOD parameters for D(1), the s

tivity analysis in Section 4.2.7.3 shows that the trained parameters suffer from an inc

variability in the “alarm trigger point”. For low lateral velocities, the driver can drift furth

away from the lane than for high lateral velocities. The curve cutting and local adap

behaviors add to this variability. While these extensions help reduce nuisance alarm

increases the unpredictably of the system. It is possible, although not demonstrated, th

ers may prefer predictability over performance. An online user study, using a predic

warning system, such as rumble strips, vs. a more complicated warning algorithm, such

one I have presented, would provide valuable insight into the preferences of a driver.
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5.2.2.5 Driver Adaptation Issues

The driver adaptation methods and new alarm decision model which improve warning

system performance for D(1) could be taken to an extreme. By adapting to D(1)’s we

the LDWS is tacitly validating D(1)’s driving behavior. The same adaptation could be us

adapt to really dangerous driving behavior, reducing the value of a the LDWS, or even ma

it dangerous, as the driver could get a false sense of security. This leads to the question

much adaptation is too much? Answering this question would require a great deal o

world driver data, over broad subject demographic, vehicle type, and weather conditi

determine the normal operating envelope of drivers. When such information becomes

able, then it would be possible to limit the adaptation of a warning system, so tha

extremes of driver behavior are not tolerated. The results on the five naturalistic su

show, however, that adapting to a driver, or at least providing a manual sensitivity adjus

is a useful tool. 

In a similar vein, providing constant feedback about drivers’ performance may 

them improve their driving. The AutoTrak system displays a constantly changing “Aler

Index,” which is a function of the driver’s lateral position variance. If the driver weaves

much, the score decreases. If the score drops below a threshold, the driver is giving a m

to get rest. At a lower level, AutoTrak also provides a constant graphical display of dr

lateral position. There is anecdotal evidence that having this type of display improves th

ity of people to drive vehicles substantially different than what they are used to; a sedan

who is driving a mini-van, for example. Improving driver feedback methods could resu

improved driver performance, which would lead to fewer alarms (nuisance or otherwise

greater system effectiveness and acceptance. 

5.3 Summary

This thesis presents a novel warning algorithm, alarm decision model, and a met

ogy for training parameters of this model for an individual driver. The goal of this th

which is to reduce nuisance alarms while maintaining adequate warning time, through t

of an improved warning algorithm and training methodology has been met for certain ty
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drivers. There is still an open question regarding the statistical significance of the results, due

to lack of data; so I provide the outline of a future research plan to determine the significance

of the results. The data, experimental methodology, and analysis presented here, will, I hope,

lead to more effective lane departure warning systems, and reduce the number of run-off-road

crashes.
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APPENDIX A Rural Roads

A.1 Introduction

In this appendix, I present an analysis of warning system performance on the entrance

of a rural section of curved road, and demonstrate that, providing adequate lane departure

warning in such situations is very difficult. While 40% percent of run off road incidents occur

on rural roads [60], driver reaction time and the sharp curves present on rural roads combine

to preclude developing a system which both has a low nuisance alarm rate and warns early

enough to prevent a roadway departure. 

There are many reasons for this. Rural roads are often narrow, have only one lane in

each direction, curve sharply, and have either narrow or unpaved shoulders. Highways, in

contrast, can be multi-lane, generally have 3.6m wide lanes, curve relatively gently, and often

have four to five meter shoulders. The presence of such a shoulder allows the driver to briefly

depart the road with no negative consequences. This, in turn, allows the warning system to

give the driver more leeway, letting the vehicle approach closer to the lane boundary before

sounding a warning. A rural road with no paved shoulder, in contrast, gives the driver very lit-

tle latitude for deviation, especially on the entrance to a curve. A warning system in this envi-

ronment would have to trigger when the driver is quite far from the lane boundary. This

increased sensitivity would result in numerous nuisance alarms, possibly prompting the driver

to ignore the system, or turn it off.



110 Rural Roads

nalysis

e real-

rtures

n of

proxi-

, sep-

educing

 sec-

d pre-

ysis, I

ent a

d even

ke it

same
This analysis begins with the most optimistic set of parameters, which demonstrates

that even when all conditions are ideal, preventing lane departures on rural roads near curves

is challenging. The set of parameters includes:

1. A perfect driver, who is always centered in the lane, follows the road curvature and head-
ing exactly, and drives at the posted speed limit.

2. A road in which curves have entry spirals which smoothly change as a clothoid.
3. A perfect, clairvoyant warning system which triggers the moment the driver deviates from 

the center of the road.
4. A driver who reacts to a warning in one second.

Using these optimistic parameters, I show that if an alarm occurs near the entrance to a

curve, the driver will be more than a third of the way to the lane boundary before having a

chance to react. Following this “ideal” analysis is a section which describes the same a

conducted using roads which are not quite clothoidal, and where driver behavior is mor

istic. This analysis will show that under less than ideal conditions, preventing lane depa

on rural roads is intractable.

Following the analysis of driver performance on curves, I present a calculatio

expected alarm rates on rural roads, not limited to curves. This work makes use of ap

mately 1 hour of real world data collected on a stretch of rural road near Columbus, Ohio

arated over 17 drivers, and shows that the presence of an adequate shoulder is vital to r

nuisance alarm rates to an acceptable level. 

A.2 Curve Analysis

This section presents the first “ideal” analysis mentioned in the introduction. The

tion starts with a discussion of the ideal and realistic driver and road models used, an

sents results in predicting lateral deviation on the entrance to a curve. In this anal

demonstrate that if all conditions are ideal, it is possible to warn a driver in time to prev

lane departure. However, Section A.2.3 shows that if these ideal conditions are relaxe

slightly, then the limitations of warning system performance and driver reaction time ma

extremely difficult to warn the driver in time to prevent a lane departure while, at the 

time, maintaining a low nuisance alarm rate.
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A.2.1 Ideal Analysis

This first part of the analysis shows that, given ideal conditions, warning a driver in

time to prevent a road departure is feasible. This section presents descriptions of the perfect

driver and road models which I use, followed by the methodology and results. 

A.2.1.1 Perfect Driver Model

As Section 1.3 shows, there are many different ways to model a driver. For the first

part of the analysis, a simple driver model is most appropriate. This model is that of a

fect” driver. A perfect driver is one who follows the instantaneous heading and curvatu

the road exactly, while staying perfectly centered within the lane. A perfect driver also tr

at the posted speed limit. Figure A-1 demonstrates this. When the driver is tracking the

the vehicle’s path is locally a circular arc, where the curvature of the arc is equal to the i

taneous curvature of the road. This perfect path is marked as path “A”. 

When the warning system triggers an alarm, the driver has a one second reactio

before being able to react. This reaction time is simulated by freezing the vehicle cur

(for the duration of the reaction time) to that of the road curvature where the alarm is

gered. At this point, the driver is no longer perfectly tracking the road, and instead follo

circular arc for the duration of the reaction time. This path is shown as path “B”. The dis

Figure A-1: A Perfect Driver -- vehicle heading, curvature, and position
match the road perfectly. “A” is the path a perfect driver would follow.
“B” is the path an inattentive driver would follow.

1.22s @ 40 m.p.h

B

A
Lateral Displacement

Straight Segment

Clothoidal Entry Spiral



112 Rural Roads

. The

n dis-

road

r-steer-

 of the

cur-

ture

ve cur-

etween

k radius

 which

d be

en be

oidal.

his or

hoidal
from the endpoint of path “B” to the road centerline is the lateral deviation of the driver

equations describing the (x, y) position of the vehicle in this state, after traveling a give

tance s are:

(A-1)

(A-2)

Where c is the curvature of the arc, θ0 is the initial heading, (x0, y0) is the (x, y) loca-

tion of the center of the circle, and (x(s), y(s)) is the (x, y) location of point s. 

A.2.1.2 Perfect Road Model

A test subject collected data for this analysis by driving over a section of rural 

while AutoTrak recorded longitudinal velocity, v, and yaw rate, yr. The subject driving the

vehicle took care to steer along the road as closely as possible, to avoid over- and unde

ing, and to stay near the posted speed limit of 35 m.p.h. The instantaneous curvature

road, C, can be computed using the relation. . Figure A-2 shows the 

vature of the road Rtest, which was used for this analysis. The top graph shows the curva

over the entire road, where positive curvatures are rightward turning roads, and negati

vatures are leftward turning. The bottom graph shows a zoomed in version of the area b

the horizontal lines. This curve was chosen for analysis based on its sharpness (the pea

of curvature is 66 meters). The portion of interest is in the range (2050, 2100) meters,

will be denoted CR. This portion of the curve is known as the entry spiral. 

According to highway design specifications, the entry spiral to a curve shoul

clothoidal, with the curvature increasing linearly over path length. This spiral should th

followed by a constant curvature circular arc, leading to an exit spiral which is also cloth

This configuration allows for a smooth traversal of the curve, as the driver has to turn 

her steering wheel at a constant rate to enter and leave the curve. 

For the ideal analysis, I use this road model. The equations describing the clot

entry spiral are:

x s( ) x0

cs θ0+( )sin

c
------------------------------+=

y s( ) y0

cs θ0+( )cos

c
-------------------------------–=

C 2πyr( ) 360v( )⁄=
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(A-3)

(A-4)

(A-5)

Where k is known as the sharpness of the clothoid, c0 is the initial curvature, θ0 is the

initial heading, and c(s), x(s), and y(s) are the curvature, x-position, and y-position of the

clothoid, respectively, parameterized over the path length, s [33]. As equations A-4 and A-5

cannot be solved analytically, they are evaluated numerically using Fresnel integrals [27].
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Figure A-2: Graph of the curvature used for analysis. The top graph is the curvature
over the entire road; the bottom graph is a close-up of the region between the two
horizontal lines. The trapezoid in the bottom graph is a least squares clothoidal
approximation of the curve. Points A, B, C are areas where the radius of curvature
error is greater than 20 meters.
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I compute the sharpness of the clothoidal entry region CR using a linear least squares

fit to curvature data in CR. The slope of this line is k. This linear approximation to the curva-

ture data is shown in red in Figure A-2.

A.2.1.3 Results

The goal of this analysis is to compute the expected lateral deviation which would

result if given the following assumptions: 1) a perfect driver, 2) a clothoidal section of road, 3)

a one second reaction time to a lane departure warning, and 4) a warning system which trig-

gers the moment the driver is no longer perfectly tracking the road. The previous two sections

described the perfect driver and road models which I use for this analysis. This section

describes the methodology and results of the analysis.

 The road, R, is a 50 meter long clothoidal path, followed by a 35 meter long circular

arc, where the sharpness of the clothoid is based on the linear fit to region CR in A-2 on

page 113. The vehicle, V, starts at point s meters along the path, where . Up to

point s, the vehicle is perfectly tracking the position, heading, and curvature of the road, simi-

lar to path “A” in Figure A-2. The driver is traveling at 35 m.p.h., which is the posted s

limit of the curve. The warning system triggers an alarm at s. At this point, I simulat

effect of the driver’s one second reaction time by freezing the curvature of his path, so th

vehicle is no longer perfectly tracking the road. This new circular path, which is simil

“B,” deviates from the road. Before the driver has a chance to react and correct, the v

will have travelled a distance proportional to his velocity, and will have deviated from

center of the road. Equations A-2, A-3, A-4, and A-5 can be used to compute this dev

as:

 (A-6)

Where D is the deviation, (Vx(s), Vy(s)) is the final location of the vehicle, and (Rx, Ry)

is the clothoidal road. Figure A-3 shows a plot of this distance, where the x-axis indicate

point along the path where the alarm occurred, and the y-axis is the calculated deviatio

figure shows that a perfect driver on a perfect road with a perfect warning system wil

0.21 meters before having a chance to react. Assuming a 3.0 meter road, and a 1.8 me

s 0 50,( )∈

D min Rx Vx s( )–( )2
Ry Vy s( )–( )2

+( )=
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cle, the driver has 0.6 meters of leeway on each side. Therefore, a 0.21 meter drift is small

enough that the driver would be able to recover. Note that the decrease in deviation which

occurs when the warning system triggers beyond 35 meters along the curve is due to the pres-

ence of the circular arc, where the curvature is constant. If the perfect driver gets a warning

while on the circular arc, he will continue to follow the arc, and track the road. 

A 0.21 meter drift gives hope that preventing accidents on rural curves is possible.

However, this result assumes a clairvoyant warning system. A realistic warning system would

react when the driver is closer to the lane boundary, cutting into the allowable deviation.

A.2.2 Ideal Time to Collision

This section uses the models developed above to present a short calculation which

shows that, at the entrance of a curve, an inattentive driver travelling at 40 m.p.h would cross

a lane boundary in 1.22 seconds. If the lane width is 3.0 meters, and the vehicle width is 1.8

meters, a lateral displacement of 0.6 meters would leave the driver with one wheel touching a

lane boundary. 
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Figure A-3: Estimated lateral deviation for a perfect driver on an ideal road. 
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Evaluating Equation A-6 until D=0.6 shows that the left tire of a vehicle travelling

along path “B” at 40 m.p.h. (17.77 meters/sec.) would touch the lane boundary in 1.2

onds. This means that, if there is no shoulder, the entire warning process, from detec

impending departure to the completion of driver correction, must occur within 1.22 seco

A.2.3 Realistic Analysis

The first analysis demonstrates that, given the ideal conditions outlined in Section

tion A.1, it may be possible to warn drivers of impending lane departures while they still 

enough time to prevent them. This analysis however, is unrealistic. The entrances to 

are generally not perfectly clothoidal, and real drivers definitely do not behave as the pre

“perfect” model suggested. Instead, they make errors when tracking a road. In this sec

will show that these errors, combined with a more realistic road model, make early det

of lane departures in curves intractable. I still use a clairvoyant warning system, which

gers the moment the driver stops perfectly tracking the road.

A.2.3.1 Realistic Road Model

In theory, roads are designed with a clothoidal entry spiral followed by a circular

In practice, issues such as cost, ease of construction, and the local landscape affect th

of a road. These issues often preclude using a clothoidal spiral in a curve, particularly i

areas. Therefore, it is difficult to know how to properly model a curve without having ac

to “as-built” blueprints, which show what was really built, as opposed to what was designed

On inspection, the region CR in Figure A-2 appears to be clothoidal. The bottom figu

shows the results of a least squares clothoidal fit to the entry and constant curvature po

the curve. Empirically, the fit looks good. However, closer inspection reveals that ther

ranges along CR where the radius of curvature error exceeds 20m. These points are m

“A,” “B,” and “C” on the figure. This could be due to over- or under-steering, but it could 

be due to actual changes in the curvature of the road. The road represented by Rtest was driven

over three times. In each case, the region CR showed similar variations from linearity. Thi

implies that the non-linearity is a feature of the road, and not necessarily an artifact intro

by the driver.
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Therefore, I use a local approach to model the road curvature at a given point. The

road curvature RC(s), at point s, (where ) is the average of the radii of curvature at C(s-

(d/2)) and C(s+(d/2)). d is the path length a driver would traverse during a reaction time of t sec-

onds at a velocity v. For this analysis, the reaction time t is always 1.0 second. Intuitively, this

model assumes the road will follow a circular arc whose radius of curvature is the average of

the radii of curvature at the start and end points of the path to be approximated. The length of

the path to be approximated is the distance the driver would traverse during one second of

reaction time. Therefore:

(A-7)

A.2.3.2 Realistic Driver Model

The perfect driver model in Section A.2.1.1 does not exist. Drivers do not track the

position, heading, and curvature of a road perfectly. This “realistic” driver model I use in

part of the analysis relaxes these assumptions. This driver still tracks the center of th

However, he or she is allowed to oscillate a bit. This oscillation is manifested as a 1 d

error in the yaw of the vehicle relative to the road, simulating the driver “driving through

center of the road at a slight angle while oscillating. The driver also travels at 5 m.p.h. ov

posted speed limit, which is 35 m.p.h.

A.2.3.3 Results

The previous sections presented a more realistic driver and road model. The two

els simplify down to circular arcs of differing curvatures. This makes the analysis o

potential displacement very convenient. This section presents the results on what the ex

deviation would be for a realistic driver with a one second reaction time on a locally cir

road. This deviation is computed by looking at the distance between the end points of tw

cular arcs; one representing the driver, and the other representing the road. 
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Figure A-4 shows the results of computing the expected deviation over the first 30

meters of CR. The x-axis is the location in the entry spiral where the alarm goes off and the

driver freezes. The y-axis is the expected deviation, which is computed using Equation A-7

for the road model. The solid line is the expected deviation computed using a realistic road

and driver model. 

The dashed line is the expected deviation if the entry spiral CR is modeled as a

clothoid, and is provided for contrast. We can see that the expected deviation is constant over

the distance along the curve. This does not fit with what is observed in the realistic road

model, further indicating that the road which was used for the test is not clothoidal. The devi-

ation is greater than 0.6m, indicating that the vehicle would depart the lane. This means that,

even with a perfect road, a driver who is traveling 5 m.p.h. over the speed limit and has a one

degree error in heading will exceed the lane boundary.

The realistic results show that the driver can end up with a tire at least 1.4 meters over

the lane boundary. This higher deviation when compared with the clothoidal road is due to the

occasional sharp changes in the curvature of the road, combined with the vehicle heading
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Figure A-4: Expected lateral deviation of a realistic driver on a realistic
road. The dashed line is the expected deviation of a realistic driver on a
perfect road. 
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error. A 1.4 meter deviation means that the outside tire is 0.8m beyond the boundary before

the driver has a chance to react. If the road has a sufficiently wide shoulder, then the driver has

a chance to correct. However, as many rural roads do not have wide shoulders, the vehicle

would end up departing the road. Again, keep in mind that these results are based on a clair-

voyant warning system. A realistic warning system would result in even larger deviations.

A.2.4 Summary

Given a perfect driver (who is traveling 5 m.p.h. above the speed limit), a clothoidal

rural road, and a clairvoyant warning system, the following events have to happen in 1.22 sec-

onds: 1) The warning system has to detect that the driver is drifting. 2) The warning system

has to sound an alarm. 3) The driver has to perceive the warning. and 4) The driver has to take

corrective action to avoid the road departure. 

This result, however, assumes a perfect driver. A normal driver is almost never per-

fectly centered in the lane. Similarly, drivers do not perfectly track the curvature and heading

of a road while entering a curve. More importantly, lane departure detection systems are not

clairvoyant. They do not trigger alarms when the driver is very near the center of the lane,

accurately tracking the road. Rather, they trigger when the driver is off center, and heading off

road. This means that the warning system really has less than one second in which to complete

the four steps outlined above, making the problem not only unreasonable, but intractable. 

A.3 Rural Road Alarm Rates

In the previous section, I present the expected lateral deviation given various driver

and road models, and a clairvoyant warning system. It concentrates on the performance of a

warning system on the entry to a curve, which can be a particularly treacherous section of road

to navigate in rural areas. This section examines the performance of a realistic warning algo-

rithm on real data collected from 17 drivers who drove over a stretch of rural road. This

stretch of road includes both curves and straight segments. 
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The section begins with a brief description of the data, followed by the methodology

of the experiment. The results show that, for rural roads with less than a meter of shoulder, the

number of alarms triggered per hour becomes unacceptably high.

A.3.1 VRTC Data

The data used in this experiment was collected by the members of the Vehicle

Research Test Center (VRTC) in Columbus, Ohio, using their DASCAR data collection vehi-

cle [14]. This vehicle uses downward looking cameras mounted on the sides of the rear of the

vehicle to track lane boundaries and derive lateral position. Sixty-four subjects drove the

DASCAR on a series of rural and interstate roads while data on their lane keeping perfor-

mance was logged. Of the 64 subjects, 17 produced enough valid data on the rural section of

road to be of use in this analysis. 

A.3.2 Methodology

I applied a first order future offset distance (FOD) warning algorithm to each of the 17

rural road datasets. The FOD algorithm, which is discussed in Section 3.3, predicts the lateral

position of a vehicle FODt seconds into the future, where FODt is the lookahead time. If the

predicted lateral position is more than FODd meters beyond the lane boundary, a warning is

triggered. FODd is the virtual lane boundary. Setting FODd greater than 0 meters has the effect

of allowing the driver to wander beyond the lane boundary by FODd meters. For this experi-

ment, the prediction was generated using a first order model,  where

Lp’ is the predicted lateral position, Lp is the current lateral position, and Lv is the lateral

velocity. 

When applying the FOD algorithm to the 17 datasets, the lookahead time parameter

was varied over the range [0, 2.0] seconds in increments of 0.2 seconds. The offset distance

parameter was in the range [0.0, 0.6, 1.2, 1.8] meters (corresponding to [0, 2, 4, 6] ft.). Each

pair (FODt, FODd) was applied to each dataset. The alarms per hour for each run were stored,

and averaged over drivers. This resulted in one alarm/hour metric for each (FODt, FODd) pair.

Lp’ Lp Lv FODt×( )+=
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Figure A-5 shows the results of this experiment. The x-axis is FODt and the y-axis is

the number of nuisance alarms per hour. Each graph is a different FODd. Concentrating on

(FODt = 1.0s), the results show that (FODd = 0.0m) results in the highest alarms/hour. This is

not surprising, as (FODd = 0.0m) is equivalent to triggering an alarm anytime the predicted

lane position is beyond the lane boundary, which is appropriate when there is no paved shoul-

der. Even with (FODd = 0.6m), the alarm rate at (FODt = 1.0) is greater than 5 nuisance

alarms/hour. An alarm rate this high would either annoy drivers and prompt them to disable

the system, or habituate them to the alarm sound, reducing effectiveness. It is only when the

allowed deviation is greater than 1.2m does the alarm rate drop down to 0. As this dataset had

no lane changes which could look like valid road departures, and no accidents, the alarm rate

should be zero. 

Note that nuisance the alarm rate at (FODt = 0.0s, FODd = 0.0m) is approximately 6

alarms/hour. This means that the driver exceeded the lane boundary at this frequency, during

normal driving. However, the road which the subjects were driving had a 4-5ft shoulder,

which means that the deviations did not place the vehicle in jeopardy. Presumably, drivers on

a rural road with no shoulder would drive “tighter”.
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A.4 Conclusion

This appendix presents an analysis demonstrating that even given a perfect driver on a

simple road with a clairvoyant warning system, accurately predicting lane departures at the

entrance to a curve while maintaining an acceptable nuisance alarm rate is very difficult. This

analysis is then expanded to include realistic road and driver models. The large lateral devia-

tions indicate that effectively preventing road departures on rural curves is exceedingly diffi-

cult. This was further demonstrated using real data collected by the VRTC, which showed that

alarm rates become unacceptably high when trying to predict the lateral position of a driver

far enough into the future so as to give him or her enough time to appropriately react to a

warning.

This does not, however, mean that the problem is impossible to solve for all rural

roads. There is evidence that 40 percent of rural road accidents occur on roads with shoulders

which are narrower than 3 feet. If an adequate shoulder is present, Figure A-5 demonstrates

that the nuisance alarm rate is zero. However, a passive warning system would have to know

the shoulder width of the road on which it was operating, to decide whether it is capable of

detecting lane departures in time to prevent them. While such work is beyond the scope of this

thesis, annotated maps are one possible way of obtaining such information. Similarly, this

entire appendix has dealt only with passive warning systems. Active warning systems have

either steering or differential braking capability to assist the driver in staying close to the cen-

ter of the lane. Such systems could conceivably reduce the rate of rural road run off road inci-

dents even on roads with narrow or no shoulders, although this has not been demonstrated.
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APPENDIX B HURP Documents

This appendix includes the proposals required by the Carnegie Mellon University

Human Use Review Panel, and refer to the studies described in Section [REF]. They are pre-

sented as templates for use by researchers at other institutions who wish to conduct similar

studies. The first section is on the NavLab 8 study, and includes the HURP proposal, consent

form, subject questionairre, and post-experiment questionairre. The second section is on the

naturalistic driver study, and includes the HURP proposal and consent form.
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Proposal for Driver Characteristics Human 
Studies

Parag H. Batavia, Dean A. Pomerleau, Charles E. Thorpe

Abstract

This study proposes to collect driving performance data from 20 individuals, spread by gender

and age. The data will be collected while they are on extended trip in their personal vehicle,

which will be out-fitted with a data collection system.

The purpose of this study is to develop models of highway driving behavior that can be used

to tailor unexpected lane departure warning systems to individual users, increasing accuracy

and decreasing false alarms. A unexpected lane departure is defined as any human or automo-

bile action or trajectory which causes the vehicle to unexpectedly leave the lane that it is cur-

rently in. A controlled lane change would not deserve a warning, whereas drifting due to

fatigue or inattention would. 

Current research in lane departure warning systems ignores the individual traits of the driver.

Most methods use only physics-based models, which look at the current trajectory of the vehi-

cle, and calculate a ‘time to lane crossing’, which is measured in seconds. When this n

falls below a certain threshold, a warning is sounded. This type of system does not ta

account the normal tendency of a given driver to weave slightly, or prefer one side of a l

another. By ignoring these types of factors, the warning system has to be tuned to the

common denominator, which causes an unacceptable false alarm rate. Research ha

that if the warning system cries wolf too many times, the driver tends to ignore it. It is h

that this work will not only reduce the number of false alarms, but increase the accurac

improve the reaction time of the warning. 

However, to build these types of warning systems, a large amount of data is needed to

mine what types of different traits drivers have, and how they can be exploited. For thi

son, we wish to collect driving data on a large number of individuals. The data wi

collected by the RALPH lane tracking system, which will passively monitor and record
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driving behavior of the subjects. The data collected will include current position in the lane,

the driver’s steering wheel position, velocity, and information on surrounding vehicles 

sured with on-board radar and laser. A video tape recording of the road ahead will a

made via a camera mounted under the rear-view mirror, pointing outwards. 

Subject Utilization

The 36 individuals selected for this experiment will vary in age from 21 (the minimum

required by CMU insurance to drive a CMU owned vehicle) to 55, and will be evenly sp

gender. The subject will be asked to fill out a questionnaire, which is attached. Subjec

be asked to sign a liability waiver and submit a copy of their driver’s license for verificatio

validity, as per CMU insurance policy. The subject will be asked to drive Navlab 8, an O

mobile Silhouette van, from CMU to a destination approximately 1 hour away, and then 

He will be told that the purpose of the trip is to collect data, but besides that, he will n

told what is precisely being monitored.

At all times during the trip, the experimenter will be present in the passenger side. The 

imenter will not interfere with the subject except in two cases: 1) if the subject is driving

dangerous speed, or otherwise erratically, and 2) at random times during the trip, the 

menter will ask the subject to perform a lane change. The subject will be asked to perfor

lane change whenever he deems it is safe to do so. If the driver feels uncomfortable makin

the lane change, he will have complete freedom to disregard the instruction. If at any

during the trip, the driver feels that he is unable to continue, the experimenter will retu

subject to CMU. Furthermore, the trip will only be made if road conditions are clear thro

out the intended route, and no precipitation is forecast. 

Sample Consent Form

See Attached
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Confidentiality

Confidentiality will be maintained by assignment of a number to each driver. The only driver-

specific information that will be recorded is what is on the questionnaire. All computer files

and video tapes will be labeled only with the code number. 

Risk/Benefit Analysis

There is no direct benefit to the subjects participating in this experiment. There is, however, a

benefit to society. Currently, approximately 90% of all traffic accidents are caused by driver

error. This includes nearly 14,000 deaths each year due directly to run-off-road incidents,

which is 1/3rd of all driving fatalities.A lane departure warning system will aid in alleviating

this form of error. By reducing the number of false alarms, the system will be more easily

accepted by the driver. Increasing the accuracy and using driver specific information will

decrease the warning time and increase the reaction time available to the driver, preventing

possibly fatal lane departures. The risk to the participant is negligible, and equivalent to the

normal risk assumed when operating a vehicle on a 2 hour trip. 
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Carnegie Mellon University

Driver Characteristics Study
Conducted By The Robotics Institute

Consent Form

I agree to participate in experimental research conducted by members of the faculty or by students under the supervision of 
members of the faculty. I understand that the proposed research has been reviewed by the University’s Institutional R
Board and that to the best of their ability they have determined that the observations involve no invasion of my rights
vacy, nor do they incorporate any procedure or requirements which may be found morally or ethically objectionable. 
ever, at any time I wish to terminate my participation in this study I have the right to do so without penalty. I have the t to 
request and keep a copy of this form. 

If you have any questions about this study, you should feel free to ask them now or anytime throughout the study by
ing:

Dr. Charles E. Thorpe
Robotics
224 Smith Hall
(412)268-3612
cet@ri.cmu.edu

You may report any objections to the study, either orally or in writing to:

Susan Burkett
Associate Provost
Carnegie Mellon University
(412)268-8746

Purpose of the Study: I understand that I will be driving an Oldsmobile Silhouette Minivan on a round trip from CMU to 
destination one hour away. I realize that data about my driving performance will be recorded, and a video will be kep
road in front of me. I will not be able to be identified by this video. If at any time I do not wish to continue with the expi-
ment, the experimenter will return me to CMU with no questions asked and no penalty. 

I understand that the following procedure will be used to maintain my anonymity in analysis and publications/presenta
results. Each participant will be assigned a number. The researchers will save the data and videotape files by particip
ber, not name. Only members of the research group will view the tapes in detail. 

I understand that in signing this consent form, I give Professor Thorpe, and his associates, permission to present thi 
written and oral form without further permission from me. 

______________________________ __________________________
Signature Date

______________________________  __________________________
Print Name Telephone

Consent for public display of experimental videotape
I give my permission for the video tape of the experiment in which I have participated to be shown in public. I realize 
the tape is shown in public, viewers will not be able to identify me. I have the right to refuse this request without pena

______________________________ _________________________
Signature - I give permission Signature - I refuse permission
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Number: ______

Driver Characteristics Study Questionnaire

General

Age:___________________ Gender:          __ Male     __ Female

Driving Experience

Do you have a driver’s license?                  __________________

How long have you been licensed?           __________________

If yes, how often do you currently drive?  __________________

What kind of car do you normally drive?   __________________

Have you had a moving violation within the last year?  _______

Number: ______



129

ly’
Driver Characteristics Post-Study Questionnaire

For each question below, circle the number that best indicates how you feel. The numbers 

range from 1 to 5, with 1 meaning ‘I don’t agree at all’, and 5 meaning ‘I agree complete

       Disagree         Agree
     _______________________________

I felt uncomfortable driving a mini-van 1 2 3 4 5

Having someone else in the car made me nervous 1 2 3 4 5

My driving style was different today than normal 1 2 3 4 5

I tried to stay in the center of the lane 1 2 3 4 5

I had trouble remembering to use the turn signal. 1 2 3 4 5

I had trouble judging where the right side of the vehicle1 2 3 4 5
was

I drove slower than I normally do 1 2 3 4 5
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Proposal for Driver Characteristics Human 
Studies

Parag H. Batavia, Dean A. Pomerleau, Charles E. Thorpe

Abstract

This study proposes to collect driving performance data from 20 individuals, spread by gender

and age, on an extended trip (> 6 hours) or daily commute in which the subject’s veh

out-fitted with a data collection and lane departure warning system. 

The purpose of this study is to analyze the performance of our lane departure warning s

This system uses a video camera mounted under the rear-view mirror and an associate

puter system to scan the road ahead of the vehicle, and determine the lane position of

This lane position is then used to extrapolate the future position of the vehicle. If it appe

if the driver is about to depart the road (either due to inattention, drowsiness, or other im

ment), the system sounds an alarm to alert the driver to pay attention (although, as w

describe below, this audible warning will not be used in this study).

We wish to study the performance of the system in two areas: system availability, and w

accuracy. System availability will involve logging information about when the image from

video camera is sufficient for our computer to use to detect lane markings. Situations s

heavy fog, high glare, hard rain, and lack of road markings can cause the system to no

tion properly. We wish to determine how often these situations occur. 

Furthermore, we wish to analyze the accuracy of our warning algorithm. This is the part 

system which looks at the vehicle’s lane position, and determines if the driver is in dan

departing the road. To this end, we will be logging data on the state of the vehicle, such

lane position, velocity, and the curvature of the upcoming road. We will also log events 

the warning system would normally trigger a warning. However, in this initial study, no f

back will be provided to the driver. 
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From the subject’s perspective, the system will be totally silent and nearly unobtrusiv

interface unit which contains a camera will be mounted (using suction cups) under the

view mirror, and this unit will be connected to a computer system and VCR. The com

system and VCR will either be placed under the passenger seat, or in the rear of the ve

Subject Utilization

The 20  individuals selected for this experiment will vary in age from 18 to 65, and wi

evenly split by gender. The subject will be asked to fill out a questionnaire, which is atta

Subjects will be asked to sign a liability waiver, which is also attached. The subject w

asked to bring his vehicle to CMU so that we can install the system. We will then prov

briefing to the subject, telling them how to activate and de-activate the system. After th

ject returns from her trip, she will be asked to return to CMU so we can remove the lane

ing system. The subject will then be provided with a page describing the purpose of the

which is attached. 

Sample Consent Form

See Attached

Confidentiality

Confidentiality will be maintained by assignment of a number to each driver. The only dr

specific information that will be recorded is what is on the questionnaire. All computer

and video tapes will be labeled only with the code number. 

Risk/Benefit Analysis

There is no direct benefit to the subjects participating in this experiment. There is, howe

benefit to society. Currently, approximately 90% of all traffic accidents are caused by d

error. This includes nearly 14,000 deaths each year due directly to run-off-road inci

which is 1/3rd of all driving fatalities. A lane departure warning system will aid in allevia

this form of error. By reducing the number of false alarms, the system will be more e

accepted by the driver. Increasing the accuracy and using driver specific informatio

decrease the warning time and increase the reaction time available to the driver, prev
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possibly fatal lane departures. There is no increase in risk to the subjects, since they will be

driving on trips they would be taking anyway, and the system will simply be unobtrusively

recording their driving behavior.
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Carnegie Mellon University

Driver Characteristics Study
Conducted By The Robotics Institute

Consent Form

I agree to participate in experimental research conducted by members of the faculty or by students under the supervision of 
members of the faculty. I understand that the proposed research has been reviewed by the University’s Institutional R
Board and that to the best of their ability they have determined that the observations involve no invasion of my rights
vacy, nor do they incorporate any procedure or requirements which may be found morally or ethically objectionable. 
ever, at any time I wish to terminate my participation in this study I have the right to do so without penalty. I have the t to 
request and keep a copy of this form. 

If you have any questions about this study, you should feel free to ask them now or anytime throughout the study by
ing:

Dr. Dean A. Pomerleau
Robotics Institute
211 Smith Hall
(412)268-3210
pomerlea@ri.cmu.edu

You may report any objections to the study, either orally or in writing to:

Susan Burkett
Associate Provost
Carnegie Mellon University
(412)268-8746

Purpose of the Study: I understand my vehicle will have an AutoTrak driver performance monitor system installed.  I re
that data about my driving performance will be recorded, and a video will be kept of the road in front of me. I will not be 
to be identified by this video. If at any time I do not wish to continue with the experiment, I may turn off the recording dce 
and return to CMU.

I understand that the following procedure will be used to maintain my anonymity in analysis and publications/presenta
results. Each participant will be assigned a number. The researchers will save the data and videotape files by particip
ber, not name. Only members of the research group will view the tapes in detail. 

I understand that in signing this consent form, I give Professor Pomerleau, and his associates, permission to present 
in written and oral form without further permission from me. 

______________________________ __________________________
Signature Date

______________________________  __________________________
Print Name Telephone

Consent for public display of experimental videotape
I give my permission for the video tape of the experiment in which I have participated to be shown in public. I realize 
the tape is shown in public, viewers will not be able to identify me. I have the right to refuse this request without pena

______________________________ _________________________
Signature - I give permission Signature - I refuse permission
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APPENDIX C NavLab 8 Local 
Disturbance Evidence

C.1 Introduction

In Section 3.6.2, I present an extension to the Future Offset Distance (FOD) based

alarm decision model which takes local deviations in driver behavior into account. My justifi-

cation for doing this is that changes in traffic, road environment, and driver behavior can all

cause biases in lane keeping performance. For instance, it is not uncommon for drivers in the

left lane who are passing a truck or other vehicle to drift to the left, to allow more space on the

right side. This drift can cause nuisance alarms for a lane departure warning system. In this

appendix, I present evidence for this drift, using the NavLab 8 data, described in Section 2.3. I

show that many drivers, when passing vehicles, tend to drift away from the vehicle they are

passing. There can be many other reasons for such local deviations, such as the presence of a

construction zone, or changes in road structure or markings. However, I do not have data on

these effects, and cannot include them in this analysis. 
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C.2 Evidence

The NavLab 8 data includes sensor information on the presence of vehicles in adjacent

lanes. There are two radar-based rear side sensors, which detect the presence of vehicle (or

other obstacles) on either side of the vehicle. This information can be used to calculate aver-

age lateral positions when adjacent vehicles are and are not present. I do this for two different

cases: When the driver is in the left lane, and when the driver is in the right lane. When the

driver is in the left lane, I calculate the average lateral position for when there is no adjacent

vehicle, and for when one is present. If adjacent vehicles cause drivers to change their behav-

ior, then the average lateral position in the presence of such a vehicle would be further left

than if there was no adjacent vehicle, and the opposite is true when the driver is in the right

lane. 

Figure C-1 shows the difference in mean lateral position with and without the presence

of an adjacent vehicle, for all 20 NavLab 8 subjects. The left graph is when the subject is in

the left lane, and the right graph shows results for when the driver is in the right lane. The left

graph shows that, for the majority of the cases, the mean lateral position with an adjacent

vehicle is to the left of the mean lateral position in the absence of an adjacent vehicle. For a

quarter of the subjects, the difference is 10cm or greater. The same is true when the subject is
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Figure C-1: Difference in mean lateral position with and without the presence of an adjacent vehicle
for the 20 NavLab 8 subjects. The left graph is when the driver is in the left lane, the right graph is
when the driver is in the right lane. Negative lateral positions and left of lane center, positive are
right.
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in the right lane. The majority of the subjects shift to the right when there is a vehicle to their

left, and again, a quarter of them shift by 10cm or more. However, the subjects who shifted

the most when in the left lane are not the same as the subjects who shifted the most in the right

lane.

There is also greater consistency over subjects in the shifting behavior when drivers

are in the left lane, opposed to when they are in the right lane. This could be because when

drivers are in the left lane, they are more likely to be passing vehicles on the right, travelling at

a higher speed, and therefore they may be more conscious of their position relative to the vehi-

cle being passed. It could also be an effect of driving NavLab 8, which is a minivan. The next

appendix shows that a few drivers had some trouble judging where the right side of the mini-

van was. This could make them more cautious when passing. Similarly, when in the right lane,

drivers have a better feel for where they are relative to obstacles to their left, and may not feel

as closed in as when they are in the left. In the majority of the cases, though, there is shifting

behavior in both left and right lanes. 

C.3 Summary

I have shown that in the presence of other vehicles, drivers tend to change their behav-

ior. This change in behavior manifests itself as a change in lateral position, to move away

from the potential obstacle. While the behavior seems to be a bit more pronounced and consis-

tent when the driver is in the left lane, it occurs when the driver is in the right lane as well.

Accounting for this shift improves warning system performance, as I demonstrate in Section

3.6.2.4. 
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APPENDIX D Navlab 8 
Questionnaire

D.1 Introduction

This appendix looks at the results of the survey which subjects in the NavLab 8 study

(described in Section 2.3) completed. This survey was completed by subjects after they had

driven Navlab 8 and returned to CMU. The purpose of the questionnaire was to gauge the sub-

ject’s perception of his driving performance, to use as a measure of possible confou

effects in the data. The subjects were asked to agree or disagree to the following statem

a range from 1 to 5, where “1” was “disagree” and “5” was “agree”:

1. I felt uncomfortable driving a mini-van.
2. Having someone else in the car made me nervous.
3. My driving style was different today than normal.
4. I tried to stay in the center of the lane.
5. I had trouble remembering to use the turn signal.
6. I had trouble judging where the right side of the vehicle was.
7. I drove slower than I normally do.

Figure D-1 shows a histogram of the responses to each of the questions.
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D.2 Discussion

Section 2.3.3.2 discussed possible confounding effects which may have influenced the

data collected in the Navlab 8 study. These effects included driving an unfamiliar vehicle, and

the presence of an experimenter. 

Question 1 addresses the level of comfort the subject experienced while driving a

mini-van. Figure D-1 shows a histogram of responses to this question, and Table 4-1 shows

the cross-correlation between the questions. Note that while the majority did not claim to feel

uncomfortable, a significant percentage had responses of “4” or “5,” indicating that the

uncomfortable driving the mini-van. However, more than half of the subjects claimed litt

no discomfort in driving a mini-van.
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Figure D-1: Histograms of responses to the Navlab 8 post-study questionnaire.
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My presence in Navlab as an experimenter was another possible confounding factor in

subject behavior. However, the survey answers very strongly indicate that this is not so. The

responses to question 2 are nearly all “1,” indicating that my presence did not affect 

behavior. This is not surprising, considering that most of the subjects were colleagues,

I’ve known for a while. It is, instead, more likely that my presence actually had the opp

effect. Having an extra person in the vehicle, who is conversing with the driver, may he

driver forget that he is being monitored, and let him behave naturally. However, this is

cult to quantify, as no controlled experiments were done. Subjects also had no trouble r

bering to use their turn signal, which was the only explicit instruction they were befor

trial. This matches the observations in the data, which show that nearly all lane change

marked with turn signals. 

The responses to questions 1 and 2 suggest that while the differences between 

a mini-van and a sedan might have influenced driver behavior, my presence in the v

most likely did not. The remaining questions expand on these two possible sources of

tamination”. 

Question 7, in particular, highlights one of the main differences between sedan

mini-vans, which is the difference in visibility out the right side. It is more difficult to jud

the position of the right side of a mini-van, due to reduced visibility, than of a sedan. 

ever, nearly all the respondents did not agree with question 7, indicating that they had l

Question 1 2 3 4 5 6 7

1 1.0 -0.25 -0.15 0.25 0.01 0.47 0.20

2 -0.25 1.0 -0.26 -0.45 0.38 -0.31 -0.24

3 -0.15 -0.26 1.0 0.46 0.16 0.28 0.13

4 0.25 -0.45 0.46 1.0 0.02 0.64 0.13

5 0.01 0.38 0.16 0.02 1.0 0.35 -0.16

6 0.47 -0.31 0.28 0.64 0.35 1.0 0.26

7 0.20 -0.24 0.13 0.13 -0.16 0.26 1.0

TABLE 4-1 Cross-Correlation Between Navlab 8 Survey Questions
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no trouble judging the location of the right side of the mini-van. This is also indicated in the

low correlation score (c = 0.20) between questions 1 and 7. This low correlation means that

those drivers who did feel uncomfortable weren’t necessarily uncomfortable due to res

visibility. This restricted visibility did, however, have a possibly unconscious impact on 

performance, as indicated by the leftward mean lane positions.

This disagreement could mean that another factor is to blame for the minor disco

felt in the mini-van. There is a higher correlation between questions 1 and 6 (c = 0.47), 

is whether the subject drove slower than normal. However, most subjects claimed tha

did not slow down or temper their speed during the trial. Those that did were more likely

those that felt uncomfortable in the mini-van. Question 3, which addresses the subject

ceptions of their driving style, indicates that nearly all of the drivers felt they were behavi

they normally do. 

D.3 Summary

This appendix has evaluated the perception of a Navlab 8 test subject vs. his

performance, through the use of a post study questionnaire. The main conclusions wh

be drawn from this analysis are that while vehicle type may be a confounding effect, the

ence of an experimenter most likely was not. This entire analysis, however, was based

subject’s perception of his behavior. The small sample size (N = 17) makes the correla

shown in Table 4-1 difficult to judge. In any event, supposing causal relations due to co

tion score is always risky.
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