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Abstract dangerous piece of equipment. The size of obstacles can

Obstacle detection is a key component of autonomous systerr\{gry’ and the detection system has to operate reliably in

In particular, when dealing with large robots in unstructured vquous Ilghtlhg conditions, along with I,'ght fog and
environments, robust obstacle detection is vital. In this papef@in, and at night as well. We have examined two meth-
we describe an obstacle detection methodology which conf2ds for detecting obstacles, along with methods for inte-
bines two complimentary methods: adaptive color segmentagration of these two methods.

tion, and stereo-based color homography. This algorithm is .

particularly suited for environments in which the terrain is rel- 2.1. Color Sgmentation

atively flat and of roughly the same color. We will show result

) ) ) The basic idea behind color segmentation for obstacle
in applying this method to an autonomous outdoor robot.

detection is that pixels in an image are classified as
1. Introduction “obstacle” or “freespace” based on color. When operat-
ing in domains in which traversable areas are of rela-

This paper describes an obstacle detection algorithm fafvely constant color, such as grass, color segmentation
use in relatively flat areas where there is similarity inworks well.

color. The method is robust to false positives and nega:

i th h th f i " thod £ach pixel in a color image consists of a 3-tuple, repre-
Ives throug € use of two complimentary metho S’senting the amount of energy contained in the red,
color segmentation and color homography.

green, and blue bands. Typically, each component of the
Color segmentation, as the name implies, uses color @ple is a value between 0 and 255. Therefore, one sim-
classify image areas as “obstacle” or “freespace” Thejistic method of color segmentation is a rule-based sys-
method we use is based on a training algorithm, iRem. In such a system, variousles would be used to
which examples of “freespace” are shown to the systeng|assify pixels, such asf‘red is between 100 and 175
and it learns appropriate representations. and green is less than 25 and blue is more tharthzd
Stereo-based homography is often referred to as “podatassify as freespace”

man’s stereo”. Although computationally cheap, it doeswhile conceptually simple and extremely fast, such
not provide depth information, as pure stereo doesmethods are not general. They are specific to lighting
Rather, it provides information on whether a particularconditions, and camera performance, and can easily be
image feature rises above the ground plane. In applic3ooled by shadows and variations in grass condition.
tions where a complete depth map is not needed, thigherefore, we use a general, non-parametric representa-
can be a computationally cheap alternative. We extengon similar to that used by Ollis [6] and Ulrich [12], but
the homography formulation to make use of color infor-yjth extensions for automated training and adaptation.
mation, which improves robustness. This system is usefhjs approach uses a probabilistic formulation to clas-
to automatically train the color segmentation system. sify pixels, based on a set of training images.

In the rest of this paper, we describe how both methodshese images are not stored as standard (R,G,B) tuples.
are combined to form a robust obstacle detection sysather, they are first converted to a different color space,
tem, followed by an example of its use on an outdooknown as Hue-Saturation-Value, or HSV. This is a cylin-
mobile robot. drical space, in which the H and S components contain
. the color information, in the form of a standard color
2. Obstacle Detection wheel. The Hue is the actual color, or the angle of the
Obstacle detection is a key component of an autond?oint in the cylinder, the Saturation is the “purity” of the
mous robot, particularly when dealing with large out-color, and is the radial distance of the point. The Value is
door vehicles. The robot has to have very robust obstact8e intensity, or brightness, and is the height of the point.
detection capabilities, since it is a heavy, potentiallyThis space has the advantage that if we ignore the Value



component, we get additional robustness to shadows and
illumination changes, along with a reduction in feature
dimensionality.

Other researchers have addressed the problem of color
segmentation. Hyams [3] uses a Spherical Coordinate
Transform, which is a color space previously used in the
medical domain, combined with a nearest-neighbor seg-
mentation scheme to localize daughter vehicles with
respect to a mothership. Shiji [9] uses a watershed algo-
rithm along with extensions to avoid over-segmentation.
McKenna [5] uses an adaptive mixture model to repre-
sent classes, which is a more compact representation
than ours, but is computationally more expensive to
train. The dichromatic reflection model, originally pro-
posed by Shafer [8], is still used as well, as seen in [4].
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2.1.1. Training

The training set is represented as a two dimensional his- \l/
togram. The bins in the histogram are addressed based
on the H and S values of a color pixel. The contents of

the bin denote the number of occurrences of that partic-

ular H and S pair in the training set.

The color segmentation system has to “learn” what col-
ors constitute traversable areas, such as grass. To train Obstacle Image

the Cla_SSIerI'., we Pres,em It Wlth_several Images C_)f grfasﬁgure 1: Color Segmentation training and histogram details.

taken in various lighting conditions. For each pixel in

the training image, the value of the corresponding histobeing in the training set. P is greater than a threshold,
gram bin is incremented. Therefore, colors that occuthen we classify it as freespace. Else, it is an obstacle.
often will have high values in the histogram. After train-1.€, anything which is not freespace is classified as an
ing is done, the histogram is normalized by the totapbstacle. This can lead to false positives, as we will dis-
number of samples (i.e., the sum of the bin contents), s&lSs later.

that bin contents now represent a probability. The toThe middle third of Figure 1 shows a test image, which
third of Figure 1 illustrates the training procedure. contains grass and a bag. The figure on the middle-right
The top-left image shows a set of training images ofhows the color distribution of the test image, again rep-
grass. The color values contained in these images afésented as a color wheel. Notice that although a large
added to the histogram, which is shown in the top-righportion of the test image color distribution overlaps the
image. The histogram is represented as a color whedraining set color distribution, there is a significant por-
The area to the right of the center of the wheel, whiciion which does not. This portion is due to the presence
corresponds to various shades of green, shows activit9f the bag. The lower right figure shows an “obstacle
which represents the colors in the training set. image,” in which white indicates obstacle and black
indicates freespace. The bag is accurately detected, and

The training time is linear in the number of image pix- al .
els, and in practice is extremely fast. The training can bE1€re are no false positives.

done in a supervised manner by showing examples of 1 3. Performance

freespace. Alternatively, the training set can be automat- _ _ _ -
ically acquired and adapted using homography, a confcolor segmentation relies on having a complete training

plementary method set. As lighting changes, due to time of day or weather
] conditions, the appearance of grass and obstacle change
2.1.2. Run-Time as well, since the amount of incident sunlight changes.

After training, the system is ready to classify pixels asThe color of grass is different under a cloud cover than

obstacle or freespace. For each pigelin a test image, under direct. sunlight, and is differepF in the morning vs.
we look up the bin value corresponding to the colgs. of mid-day. This can lead to false positives, if the system is

This provides us with a probabilistic measuPeof p only trained in one lighting condition, and then is used



in another. Since training is so fast, and can be done og
the fly, this is not a severe issue. If the environmental
lighting changes, we can simply re-train and continue.

Similarly, color segmentation can classify flat objects,
such as fall leaves, as obstacles, since their color is dif
ferent from grass. In these cases, it is safe to drive ove
them. Therefore, there are four possible cases: 1) Nq
obstacle, 2) true obstacle with significant height, 3) true
flat obstacle, and 4) false obstacle due to lighting

change. In cases 1 and 2, we do not need to modify the

training set. In case three, we do not want to modify thgrewous work, as described in the next section, has

training set, but want to recognize that it is safe to pro-made use of grey scale intensity images. Often, objects

ceed. In case 4, we need to augment our training set R{ different colors have the same intensity as the ground
handie the new ,environmental conditions plane. In these cases, detecting ground plane violations

. . . through image subtraction fails. To avoid this, we use
The next section describes stereo homography, which |§,o images, which capture the color properties of the
a computationally cheap yet powerful

. . neap method forpckground and potential obstacles.
detecting objects which rise above the ground plane.

Homography can provide enough information to disam2.2.1. Image Warping
biguate between cases 2 and 3 or 4.

Figure 2: Homography calibration images.

We do a perspective warping of the left image to the
2.2. Color Homography right image, based on a 3i®mography matrixThe

. . __equation to do the warping is:
In conventional stereo, multiple cameras are used to find

the range to image features. This range information X = Hx (1)
ﬁgmgssgr:osfgecﬁ fﬁéng:gg'(?gfr: *((;c)),s;[/;/rga cr):anmpuignt%edep%hgrex' is the (u,.v,l) homogenous coor(_:iinate of the
: ) . : : left image x, andH is the homography matrix.

number of image pixels) is the size of the correlation

window, andd is the number of disparities searched,H is determined through a calibration procedure,
which is related to the range of depths which can b&escribed fully in [11], in which an image pair is taken,
found. Another way to find obstacles is to use homogra@nd a small set (usually four) of corresponding features
phy, which is linear in the number of image pixels. Thisin the left and right image are manually selected. These
is because homography does not compute range. Rathfgatures must lie on the ground plane. A sample pair of
it provides just enough information to determine calibration images is shown in Figure 2. Typical features
whether a particular image feature is on the ground of© mark would be the corners of the white calibration
above it. markings.

The basic idea behind homography is this: If we knowour corresponding features provides enough con-
the extrinsic and intrinsic parameters of both camerastraints to solve for the 8 free parametersiifthe 3,3

and assume that all image featutieson the ground element ofH is always 1). However, in practice, this
plane we can solve the inverse perspective prob|emyields a sub-optimal solution. Therefore, a levenberg-
l.e., any given image point in the [left/right] camera canmarquardt non-linear optimization step is applied to find
now be back-projected into world coordinates. Thesdhe optimal value foH.

world coordinates can then be forward-projected intdOnce calibration is accomplished ards found, obsta-

the opposite camera. Using the left camera as an exaroles can be detected. Figure 3 shows an example of
ple, we can warp the left camera image to the right camhomography being used for obstacle detection.

era, and then compare the warped image against whighe top-left and top-right images are the left and right
the right camera actually sees. If all the image featuregymera input images, respectively. The bottom-left
actually do lie on the ground plane, then the warpedimage is the left image, warped as it would be seen from
image will match the actual right camera image. How-e right camera, given the assumption tiafeatures
ever, if certain image features lie above the groungie on the ground. Note that there is a triangular black
plane, then our warped image will be incorrect in thosgyrea in the warped image, on the right side. This is due
areas, and this discrepancy can be detected. to a lack of information, since the left camera field of
view does not extend as far right as the right camera
field of view. The bottom-right image is a thresholded



2.3. Integration

Given two working, complimentary, obstacle detection
methods, integration is an issue. Both methods have dif-
ferent strengths and weaknesses, and it is important to
integrate them in such a way that the strengths of each
are used to offset the respective weaknesses. For
instance, color segmentation, although able to detect
small obstacles and changes in color, is not sensitive to
obstacle geometry, such as height. Homography is only
able to find obstacles that are over a certain height. Both
methods produce a list of candidate obstacles and cen-
troid locations. It would be possible to just combine
them in an '‘'OR’ fashion. Alternatively, they could be
‘AND’ed, so that both methods would have to detect a
particular obstacle.

Figure 3: Homography example. The top images are input We use homography to act as a ‘false positive’ filter for
[nages. The btohtm”;]"iﬂ mage s a warped image. The bottom 451 segmentation. When color segmentation detects an
gntimage is fne obstacte image. obstacle, homography is used to decide whether the
difference image between the right camera image andbstacle is rising above the ground or not. If it is, then
the warped image. The two white areas in the differencehe object is classified as an obstacle. If it is not, then a
image correspond to the portions of the obstacle whiclecision has to be made whether to adaptively re-train
did not match the prediction, since it lies above thehe color segmentation system (in the case of global
ground plane. lighting change) or whether to simply ignore the object,
Previous work includes work by Storjohann [10], for @ssuming itis a temporary obstacle (such as a leaf). This
indoor applications of homography and inverse perspedlecision is made based on the size of the obstacle. If it is
tive mapping. Batavia [1] has used a monocular versiofxtremely large, subtending most of the image, then it is
of homography, utilizing a single camera and knownlikely that there is no object at all, and it is a global
ego-motion, rather than two cameras, for highwaylighting change, and we re-train. Using homography as a
obstacle detection. Santos-Victor [7] also used a monodlter allows us to adaptively re-train on the fly, without
ular approach, but with a formulation that did notOperator intervention.
require knowlgdge of ego-mghon. However, this 3. Experimental Results
approach requires the computation of normal-flow vec-
tors. Bertozzi [2] used a stereo approach for detectingye have tested the fully integrated obstacle detection
highway obstacles, with an on-line calibration-tuningsystem offline, on image sequences, and online, using a
ability. mobile robot. We have also done extended duration test-
ing using only color segmentation. The platform we use
for online testing is described in the next section

This method is robust to the types of false positivess
which confound color segmentation. The sensitivity to
true obstacles is determined by the image resolutionfhe platform used for these experiments is a riding
calibration accuracy, and field of view. This can belawnmower and is pictured in Figure 4. The front
improved by increasing the image resolution and/or narbumper contains two CCD cameras and a SICK laser
rowing the field of view. In general, the same issuescanner.
which affect stereo accuracy have an impact on homogburrently

E{ W= pifference

2.2.2. Performance

.1. Platform Description

an integrated PC, mounted in the rear, is used
raphy accuracy. to communicate with the sensors and control the vehi-
Another issue is sensitivity to pitch variations. This vari-cle. The steering and throttle are hydraulically con-
ation can come from platform vibration, or it can cometrolled, and are both actuated. A serial protocol is used
from a change in the terrain slope, which breaks théo set steering and throttle positions. The planner and
ground plane assumption. Large deviations in pitch fromrajectory generation module takes pose information as
the calibrated conditions can lead to false positives, aput, and generates trajectory commands as output, and
the image warping process is dependant on a pre-deter-

mined pose.



False Obstacle Difference Image Histogram
300!

Figure 4: Riding lawnmower with cameras and laser range
finder.

passes them to the command and safety arbiter, whic
executes commands, based on input from the obstacld
detection subsystem.

A dead-reckoning system is used for navigation, which
integrates odometry information from two wheel-
mounted encoders, along with heading information from
a fiber optic rate gyro. Dead-reckoning will accumulate
error over time. Over large distances, some form of glo-
bally-referenced localization will be required to bound
the dead-reckoning error.

0 Difference Value 0

True Obstacle Difference Image Histogram
00

Difference Value %0

3.2. Results Figure 5: Offline homography results on true obstacle vs.
false positive.

The first test involves offline processing of two image ) )

sequences. The first sequence contains one true obstafler online testing made use of the lawnmower platform.
-- a small red fire extinguisher, and is the same sequendd'€ robot navigated autonomously through an oval pat-
of Figure 3. The second sequence contains a false podg™. travelling a total of 200m over 7 minutes. The color
tive -- a large area of discolored grass and sand. segmentation system starts with an initial training set of
one image of grass. During this period, a “false obsta-

Figure 5 shows results from the two sequences. The to&e »in the form of a green sheet, was set in front of the

two images are the left and right camera images of theath. Figure 6 shows this. This sheet is meant to repre-

sand sequence. The middle left image is the color se@- o )
. . : ! ent an area of grass which is of different color than the
mentation output on the left input image. The middle

right image is a histogram of themography difference grass initially used for training. If_operating alone, a

image. Recall, the difference image is an absolute differr-]umaLn operator yvpuld have_to decide whether or not to
ence between the hue of the actual right input and th%ugment the training set with the new grass, since it

: ; . appears as an obstacle.

hue of the warped image. The bin centers are differencd® ) )

values, and the counts indicate the number of pixels it'Stéad, color homography is used to validate the color
the difference image which fell into the correspondingS€gmentation output. The sheet is flat on the ground, so
bin. Peaks at high difference values indicate the pregh® homography prediction matches what is actually

ence of an obstacle. The middle right figure shows onlpbserved. Therefore, the object is declared a false posi-
a peak at very low difference values, indicating thafVe- The decision to add this image to the color segmen-
homography does not detect an obstacle. Therefore, ti@tion training set is made because the object is larger
output of the color segmentation is actually a false posil;han a thresholded size. If the object had been smaller, it
tive. would have been ignored, and the mower would have

i ; . ntinued.
In contrast, the bottom two figures show an input |magé:0 tinued

from the fire extinguisher sequence, and the correspon@®.3. Extended Duration Results
ing difference histogram. Note the peak at higher differ- .
ence values. This indicates the presence of an obstacl¥e conducted another test during a recent demonstra-

The output of the color segmentation is true in this casdion of the color segmentation system. In this test, only
color segmentation was used. The mower runs in

straight swaths of about 10 meters, then turns 180



along with accurate localization, the inverse perspective
equations are solvable for arbitrary terrain. Also, the
color segmentation can be improved through additional
color-constancy work. In particular, accounting for the

spectral contribution of varying sunlight should greatly

reduce the number of false positives.
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