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Abstract
Obstacle detection is a key component of autonomous systems.
In particular, when dealing with large robots in unstructured
environments, robust obstacle detection is vital. In this paper,
we describe an obstacle detection methodology which com-
bines two complimentary methods: adaptive color segmenta-
tion, and stereo-based color homography. This algorithm is
particularly suited for environments in which the terrain is rel-
atively flat and of roughly the same color. We will show results
in applying this method to an autonomous outdoor robot. 

1. Introduction

This paper describes an obstacle detection algorithm for
use in relatively flat areas where there is similarity in
color. The method is robust to false positives and nega-
tives through the use of two complimentary methods:
color segmentation and color homography.

Color segmentation, as the name implies, uses color to
classify image areas as “obstacle” or “freespace” The
method we use is based on a training algorithm, in
which examples of “freespace” are shown to the system,
and it learns appropriate representations.

Stereo-based homography is often referred to as “poor
man’s stereo”. Although computationally cheap, it does
not provide depth information, as pure stereo does.
Rather, it provides information on whether a particular
image feature rises above the ground plane. In applica-
tions where a complete depth map is not needed, this
can be a computationally cheap alternative. We extend
the homography formulation to make use of color infor-
mation, which improves robustness. This system is used
to automatically train the color segmentation system. 

In the rest of this paper, we describe how both methods
are combined to form a robust obstacle detection sys-
tem, followed by an example of its use on an outdoor
mobile robot.

2. Obstacle Detection

Obstacle detection is a key component of an autono-
mous robot, particularly when dealing with large out-
door vehicles. The robot has to have very robust obstacle
detection capabilities, since it is a heavy, potentially

dangerous piece of equipment. The size of obstacles 
vary, and the detection system has to operate reliably
various lighting conditions, along with light fog and
rain, and at night as well. We have examined two me
ods for detecting obstacles, along with methods for in
gration of these two methods.

2.1. Color Segmentation

The basic idea behind color segmentation for obsta
detection is that pixels in an image are classified 
“obstacle” or “freespace” based on color. When oper
ing in domains in which traversable areas are of re
tively constant color, such as grass, color segmentat
works well.

Each pixel in a color image consists of a 3-tuple, rep
senting the amount of energy contained in the re
green, and blue bands. Typically, each component of 
tuple is a value between 0 and 255. Therefore, one s
plistic method of color segmentation is a rule-based s
tem. In such a system, various rules would be used to
classify pixels, such as “if  red is between 100 and 175
and green is less than 25 and blue is more than 70, then
classify as freespace”. 

While conceptually simple and extremely fast, su
methods are not general. They are specific to lighti
conditions, and camera performance, and can easily
fooled by shadows and variations in grass conditio
Therefore, we use a general, non-parametric represe
tion similar to that used by Ollis [6] and Ulrich [12], bu
with extensions for automated training and adaptatio
This approach uses a probabilistic formulation to cla
sify pixels, based on a set of training images.

These images are not stored as standard (R,G,B) tup
Rather, they are first converted to a different color spa
known as Hue-Saturation-Value, or HSV. This is a cyli
drical space, in which the H and S components cont
the color information, in the form of a standard colo
wheel. The Hue is the actual color, or the angle of t
point in the cylinder, the Saturation is the “purity” of th
color, and is the radial distance of the point. The Value
the intensity, or brightness, and is the height of the po
This space has the advantage that if we ignore the Va



,
cle.
an
is-

ch
ght
p-
rge
e

r-
ce
le
k

 and

ng
er
nge

es.
an
s.
 is
d

component, we get additional robustness to shadows and
illumination changes, along with a reduction in feature
dimensionality.

Other researchers have addressed the problem of color
segmentation. Hyams [3] uses a Spherical Coordinate
Transform, which is a color space previously used in the
medical domain, combined with a nearest-neighbor seg-
mentation scheme to localize daughter vehicles with
respect to a mothership. Shiji [9] uses a watershed algo-
rithm along with extensions to avoid over-segmentation.
McKenna [5] uses an adaptive mixture model to repre-
sent classes, which is a more compact representation
than ours, but is computationally more expensive to
train. The dichromatic reflection model, originally pro-
posed by Shafer [8], is still used as well, as seen in [4]. 

2.1.1. Training

The training set is represented as a two dimensional his-
togram. The bins in the histogram are addressed based
on the H and S values of a color pixel. The contents of
the bin denote the number of occurrences of that partic-
ular H and S pair in the training set.

The color segmentation system has to “learn” what col-
ors constitute traversable areas, such as grass. To train
the classifier, we present it with several images of grass
taken in various lighting conditions. For each pixel in
the training image, the value of the corresponding histo-
gram bin is incremented. Therefore, colors that occur
often will have high values in the histogram. After train-
ing is done, the histogram is normalized by the total
number of samples (i.e., the sum of the bin contents), so
that bin contents now represent a probability. The top
third of Figure 1 illustrates the training procedure.  

The top-left image shows a set of training images of
grass. The color values contained in these images are
added to the histogram, which is shown in the top-right
image. The histogram is represented as a color wheel.
The area to the right of the center of the wheel, which
corresponds to various shades of green, shows activity,
which represents the colors in the training set.

The training time is linear in the number of image pix-
els, and in practice is extremely fast. The training can be
done in a supervised manner by showing examples of
freespace. Alternatively, the training set can be automat-
ically acquired and adapted using homography, a com-
plementary method 

2.1.2.  Run-Time

After training, the system is ready to classify pixels as
obstacle or freespace. For each pixel, p,  in a test image,
we look up the bin value corresponding to the color of p.
This provides us with a probabilistic measure, P, of p

being in the training set. If P is greater than a threshold
then we classify it as freespace. Else, it is an obsta
I.e, anything which is not freespace is classified as 
obstacle. This can lead to false positives, as we will d
cuss later. 

The middle third of Figure 1 shows a test image, whi
contains grass and a bag. The figure on the middle-ri
shows the color distribution of the test image, again re
resented as a color wheel. Notice that although a la
portion of the test image color distribution overlaps th
training set color distribution, there is a significant po
tion which does not. This portion is due to the presen
of the bag. The lower right figure shows an “obstac
image,” in which white indicates obstacle and blac
indicates freespace. The bag is accurately detected,
there are no false positives. 

2.1.3. Performance

Color segmentation relies on having a complete traini
set. As lighting changes, due to time of day or weath
conditions, the appearance of grass and obstacle cha
as well, since the amount of incident sunlight chang
The color of grass is different under a cloud cover th
under direct sunlight, and is different in the morning v
mid-day. This can lead to false positives, if the system
only trained in one lighting condition, and then is use

Training Images

Test Image

Training Histogram

Testing Histogram

Obstacle Image

Figure 1: Color Segmentation training and histogram details.



as
cts
nd
ons
se
he

he

e

e,
,
es
se
 of
es
n

n-

s
g-
d

 of

ht
eft
om

ck
ue
f

era
d

in another. Since training is so fast, and can be done on
the fly, this is not a severe issue. If the environmental
lighting changes, we can simply re-train and continue. 

Similarly, color segmentation can classify flat objects,
such as fall leaves, as obstacles, since their color is dif-
ferent from grass. In these cases, it is safe to drive over
them. Therefore, there are four possible cases: 1) No
obstacle, 2) true obstacle with significant height, 3) true
flat obstacle, and 4) false obstacle due to lighting
change. In cases 1 and 2, we do not need to modify the
training set. In case three, we do not want to modify the
training set, but want to recognize that it is safe to pro-
ceed. In case 4, we need to augment our training set to
handle the new environmental conditions. 

The next section describes stereo homography, which is
a computationally cheap yet powerful method for
detecting objects which rise above the ground plane.
Homography can provide enough information to disam-
biguate between cases 2 and 3 or 4. 

2.2. Color Homography

In conventional stereo, multiple cameras are used to find
the range to image features. This range information
comes at a steep computational cost. Computing depth
using stereo is of the order O(m*n*d), where m is the
number of image pixels, n is the size of the correlation
window, and d is the number of disparities searched,
which is related to the range of depths which can be
found. Another way to find obstacles is to use homogra-
phy, which is linear in the number of image pixels. This
is because homography does not compute range. Rather,
it provides just enough information to determine
whether a particular image feature is on the ground or
above it.

The basic idea behind homography is this: If we know
the extrinsic and intrinsic parameters of both cameras,
and assume that all image features lie on the ground
plane, we can solve the inverse perspective problem.
I.e., any given image point in the [left/right] camera can
now be back-projected into world coordinates. These
world coordinates can then be forward-projected into
the opposite camera. Using the left camera as an exam-
ple, we can warp the left camera image to the right cam-
era, and then compare the warped image against what
the right camera actually sees. If all the image features
actually do lie on the ground plane, then the warped
image will match the actual right camera image. How-
ever, if certain image features lie above the ground
plane, then our warped image will be incorrect in those
areas, and this discrepancy can be detected. 

Previous work, as described in the next section, h
made use of grey scale intensity images. Often, obje
of different colors have the same intensity as the grou
plane. In these cases, detecting ground plane violati
through image subtraction fails. To avoid this, we u
hue images, which capture the color properties of t
background and potential obstacles.

2.2.1. Image Warping

We do a perspective warping of the left image to t
right image, based on a 3x3 homography matrix. The
equation to do the warping is:

(1)

Where x’ is the (u,v,1) homogenous coordinate of th
left image, x, and H is the homography matrix.

H is determined through a calibration procedur
described fully in [11], in which an image pair is taken
and a small set (usually four) of corresponding featur
in the left and right image are manually selected. The
features must lie on the ground plane. A sample pair
calibration images is shown in Figure 2. Typical featur
to mark would be the corners of the white calibratio
markings.

Four corresponding features provides enough co
straints to solve for the 8 free parameters in H (the 3,3
element of H is always 1). However, in practice, thi
yields a sub-optimal solution. Therefore, a levenber
marquardt non-linear optimization step is applied to fin
the optimal value for H. 

Once calibration is accomplished and H is found, obsta-
cles can be detected. Figure 3 shows an example
homography being used for obstacle detection.

The top-left and top-right images are the left and rig
camera input images, respectively. The bottom-l
image is the left image, warped as it would be seen fr
the right camera, given the assumption that all features
lie on the ground. Note that there is a triangular bla
area in the warped image, on the right side. This is d
to a lack of information, since the left camera field o
view does not extend as far right as the right cam
field of view. The bottom-right image is a thresholde

x' Hx=

Figure 2: Homography calibration images.
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difference image between the right camera image and
the warped image. The two white areas in the difference
image correspond to the portions of the obstacle which
did not match the prediction, since it lies above the
ground plane. 

Previous work includes work by Storjohann [10], for
indoor applications of homography and inverse perspec-
tive mapping. Batavia [1] has used a monocular version
of homography, utilizing a single camera and known
ego-motion, rather than two cameras, for highway
obstacle detection. Santos-Victor [7] also used a monoc-
ular approach, but with a formulation that did not
require knowledge of ego-motion. However, this
approach requires the computation of normal-flow vec-
tors. Bertozzi [2] used a stereo approach for detecting
highway obstacles, with an on-line calibration-tuning
ability.

2.2.2. Performance

This method is robust to the types of false positives
which confound color segmentation. The sensitivity to
true obstacles is determined by the image resolution,
calibration accuracy, and field of view. This can be
improved by increasing the image resolution and/or nar-
rowing the field of view. In general, the same issues
which affect stereo accuracy have an impact on homog-
raphy accuracy.

Another issue is sensitivity to pitch variations. This vari-
ation can come from platform vibration, or it can come
from a change in the terrain slope, which breaks the
ground plane assumption. Large deviations in pitch from
the calibrated conditions can lead to false positives, as
the image warping process is dependant on a pre-deter-
mined pose. 

2.3. Integration

Given two working, complimentary, obstacle detectio
methods, integration is an issue. Both methods have 
ferent strengths and weaknesses, and it is importan
integrate them in such a way that the strengths of e
are used to offset the respective weaknesses. 
instance, color segmentation, although able to det
small obstacles and changes in color, is not sensitive
obstacle geometry, such as height. Homography is o
able to find obstacles that are over a certain height. B
methods produce a list of candidate obstacles and c
troid locations. It would be possible to just combin
them in an ‘OR’ fashion. Alternatively, they could b
‘AND’ed, so that both methods would have to detect
particular obstacle.

We use  homography to act as a ‘false positive’ filter f
color segmentation. When color segmentation detects
obstacle, homography is used to decide whether 
obstacle is rising above the ground or not. If it is, th
the object is classified as an obstacle. If it is not, the
decision has to be made whether to adaptively re-tr
the color segmentation system (in the case of glo
lighting change) or whether to simply ignore the objec
assuming it is a temporary obstacle (such as a leaf). T
decision is made based on the size of the obstacle. If 
extremely large, subtending most of the image, then i
likely that there is no object at all, and it is a glob
lighting change, and we re-train. Using homography a
filter allows us to adaptively re-train on the fly, withou
operator intervention. 

3. Experimental Results

We have tested the fully integrated obstacle detect
system offline, on image sequences, and online, usin
mobile robot. We have also done extended duration te
ing using only color segmentation. The platform we u
for online testing is described in the next section

3.1. Platform Description

The platform used for these experiments is a ridi
lawnmower and is pictured in Figure 4. The fron
bumper contains two CCD cameras and a SICK la
scanner.

Currently, an integrated PC, mounted in the rear, is u
to communicate with the sensors and control the ve
cle.  The steering and throttle are hydraulically co
trolled, and are both actuated. A serial protocol is us
to set steering and throttle positions. The planner a
trajectory generation module takes pose information
input, and generates trajectory commands as output, 

Figure 3: Homography example. The top images are input
images. The bottom left image is a warped image. The bottom
right image is the obstacle image. 
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passes them to the command and safety arbiter, which
executes commands, based on input from the obstacle
detection subsystem. 

A dead-reckoning system is used for navigation, which
integrates odometry information from two wheel-
mounted encoders, along with heading information from
a fiber optic rate gyro. Dead-reckoning will accumulate
error over time. Over large distances, some form of glo-
bally-referenced localization will be required to bound
the dead-reckoning error.

3.2. Results

The first test involves offline processing of two image
sequences. The first sequence contains one true obstacle
-- a small red fire extinguisher, and is the same sequence
of Figure 3. The second sequence contains a false posi-
tive -- a large area of discolored grass and sand.

Figure 5 shows results from the two sequences. The top
two images are the left and right camera images of the
sand sequence. The middle left image is the color seg-
mentation output on the left input image. The middle
right image is a histogram of the homography difference
image. Recall, the difference image is an absolute differ-
ence between the hue of the actual right input and the
hue of the warped image. The bin centers are difference
values, and the counts indicate the number of pixels in
the difference image which fell into the corresponding
bin. Peaks at high difference values indicate the pres-
ence of an obstacle. The middle right figure shows only
a peak at very low difference values, indicating that
homography does not detect an obstacle. Therefore, the
output of the color segmentation is actually a false posi-
tive. 

In contrast, the bottom two figures show an input image
from the fire extinguisher sequence, and the correspond-
ing difference histogram. Note the peak at higher differ-
ence values. This indicates the presence of an obstacle.
The output of the color segmentation is true in this case.

Our online testing made use of the lawnmower platfor
The robot navigated autonomously through an oval p
tern, travelling a total of 200m over 7 minutes. The col
segmentation system starts with an initial training set
one image of grass. During this period, a “false obs
cle,” in the form of a green sheet, was set in front of t
path. Figure 6 shows this. This sheet is meant to rep
sent an area of grass which is of different color than 
grass initially used for training. If operating alone, 
human operator would have to decide whether or no
augment the training set with the new grass, since
appears as an obstacle.

Instead, color homography is used to validate the co
segmentation output. The sheet is flat on the ground
the homography prediction matches what is actua
observed. Therefore, the object is declared a false p
tive. The decision to add this image to the color segm
tation training set is made because the object is lar
than a thresholded size. If the object had been smalle
would have been ignored, and the mower would ha
continued. 

3.3. Extended Duration Results

We conducted another test during a recent demons
tion of the color segmentation system. In this test, on
color segmentation was used. The mower runs 
straight swaths of about 10 meters, then turns 1

Figure 4: Riding lawnmower with cameras and laser range
finder.

Figure 5: Offline homography results on true obstacle vs.
false positive. 

False Obstacle Difference Image Histogram

0 90

3000

0

True Obstacle Difference Image Histogram
3000

0
0 90Difference Value

Difference Value



ive
e
al
e
ly

ng
-
n-

e
e

e
,’
6,

-
-
n

ng

or
d

”
-

le

o-
8,

n
r-
on

n
y
n-
. 
r
l

le

an
g-
ere,
degrees and repeats the pattern. The total distance trav-
elled in this case is about 60 meters, and the total area
mowed is about 80 square meters. Over a recent four
day period, we repeated this pattern approximately 50
times, resulting in a total distanced travelled of about 3
km., and a total area covered of about 4 square km. Over
these 50 trials, false positives were encountered on aver-
age of once every 250m of travel. True obstacles were
also placed in its path, with 100% detection. 

4. Conclusion and Future Work

We have demonstrated a novel integration of two vision-
based obstacle detection methodologies: color segmen-
tation, and color homography. Each method has
strengths which compensate for the other’s weaknesses,
resulting in a robust method for obstacle detection. Fur-
thermore, the homography is used to autonomously train
the color segmentation system, allowing unsupervised
training. 

Future work includes further improving the robustness
of the obstacle detection system and navigation system
to allow for unattended operation over larger areas, on
the order of 10 to 20 square kilometers. In particular, the
homography approach is not limited to flat ground.
Given terrain information, in the form of a digital map,

along with accurate localization, the inverse perspect
equations are solvable for arbitrary terrain. Also, th
color segmentation can be improved through addition
color-constancy work. In particular, accounting for th
spectral contribution of varying sunlight should great
reduce the number of false positives. 
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Figure 6: A green sheet simulating an area of new grass. The
lower left image is a depiction of the training set before the
new grass was added. The lower right is the training set after
it was added.
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