
 Abstract

Many current avenues of vision research involve
fully analyzing an image with expensive, high powered
computers. This approach has major implications in terms
of cost, size, and power consumption. Other methods have
involved sub-sampling an image to reduce cost and
complexity. This has the disadvantage of information loss.
We present a low cost, low powered, reduced complexity
vision system capable of intelligently sampling an image
to reduce this information loss. The design philosophy and
methodology is discussed, along with sample applications.
Primarily, we demonstrate how the reduced complexity
vision system will be used to aid in navigation of an
autonomous flying vehicle. This is quantified by showing
how having multiple sampling schemes result in increased
robustness and accuracy of our helicopter line tracking
algorithm.

1 Introduction

In this paper, we present a low cost, Reduced
Complexity Vision system (RCV). This system is capable
of arbitrarily sampling an image, with the goal of
intelligently reducing the amount of information required
to analyze an image.

 An average image of 512*512 pixels contains a
quarter megabyte of data which needs to be analyzed.
Much of this information is redundant, and processing it
takes a significant amount of effort that may not be
required.

Many current approaches which attempt to
analyze full video images at 30 frames per second require
either very expensive systems such as Warp machines in
the CMU Navlab (Ross, 1993), or expensive, complicated
custom hardware (Van der Wal, 1992).

There are a number of previous approaches
which sub-sampled images, either through custom
hardware, or special purpose integrated circuits. Some of
these systems were developed by Bederson(1992),
Burt(1988),  and Horswill(1993), which will be discussed
later. While this is an improvement in cost and complexity
over transputers and Warp machines, there are limitations
to these approaches as well. These approaches used a
relatively fixed or highly regular sampling strategy.

This results in our primary motivation for this
work. We want to achieve the savings in power, cost, and
complexity of sub-sampled systems, while retaining the
flexibility of higher cost processors as much as possible.
A system of this type would have many applications in the
field of active vision. Some of the primary interests of
active vision are attention mechanisms, spatially variant
sensing, and real time tracking (Blake, 1992).

The RCV attempts to tackle these issues by
combining the flexibility of high end vision systems with
the low cost and low power advantages of sub-sampled
systems.  This is done by building a vision system which
costs less than $500, and can perform low level vision
tasks in real t ime. The real t ime processing was
accomplished in two ways, by limiting the amount of data
that can be processed per frame, and by providing a
mechanism in which intelligent sampling choices can be
made to maximize the amount of information present in
the reduced sample.

To accomplish this goal, a concept called
dynamic foveation was developed. Dynamic foveation
allows the user of the system to change the sampling
scheme of the device on the fly. For example, when
initially surveying a scene, a sparse sampling of the entire
field can be taken. This sub-sampled image, which at most
can be 4Kbytes of data (generally a 64 by 64 pixel array),
can be quickly analyzed for any areas of interest.

When an area of interest is found, it can be
fixated on and analyzed in more detail. Simultaneously,
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sparse attention is still paid to the surrounding area, to
look for new areas of interest. Therefore, the key to
avoid ing the loss of  in format ion that  normal ly
accompanies sub-sampling is to sub-sample the image
intelligently.

Our primary demonstration of this will be in the
RCV’s use in the Association for Unmanned Vehicle
Systems autonomous flying vehicle contest, which has
been held at the Georgia Institute of Technology for the
past four years. The goal of the contest is to build an
autonomous flying vehicle which is capable of starting in a
pre-determined location on a football field (as shown in
Fig. 2) and then move to a source ring which contains
randomly placed 6” disks. It must then pick up a disk,
transport it over a 3’ high barrier, and deposit it in a
destination ring. The entire task must be repeated six times
in under six minutes.

So far, no one has been able to complete the task.
Last year, the USC Autonomous Helicopter project was
able to navigate to the source ring using dead-reckoning.
Because of weight constraints and the lack of certainty in
our knowledge of our position, the craft was unable to pick
up a disk. The effort is described in (Fagg et al, 1993).

3. RCV II System Description

The RCV II is the second generation of reduced
complexity vision systems built at USC. The first version
was a proof of concept model which had many of the same
features of the RCV II, but at higher cost and power usage.

Our current version consists of Motorola 68332
BCC and only 15 MSI and LSI chips. Total power
consumption  is 5 watts. Additionally, we are also able to
perform simple operations such as adaptive thresholding

and simple Hough transforms at near frame rate and object
tracking at half frame rate.

There are four key components to the RCV II, the
CPU submodule, analog section, look up table, and
window buffer. Each section is independent in operation
from the other sections, as shown in Figure 1, with various
control signals passing between the modules.

3.1. circuit overview

The Motorola 68332 is a SISD processor based
on the 68000 series family, commonly used in the
Macintosh. However, as it is a microcontroller, rather than
simply a microprocessor, it has a number of features which
make it suitable for the control of external hardware. Some
of its main limitations are a lack of floating point
operators, and a relatively slow clock speed of 16Mhz.
(MC68332, 1990)

The analog preprocessor section includes an
Analog Devices AD9502 video digitizer. This is a hybrid
chip which takes in an NTSC video signal, such as one
generated by a camera, TV, or VCR, and outputs 8-bit
grayscale data.

This chip is augmented by the use of an LM1881
synchronization module which provides vertical and
horizontal sync signals decoupled from the NTSC video
signal. The 1881 also provides a signal which indicates
when a new frame is beginning.

The most critical section of circuitry is the look
up table (LUT). It is here that the sampling strategy is set
up. The look up table is a bitmap of the entire video frame.
When a pixel is to be sampled, the corresponding bit in the
LUT is set to a high state by the CPU. This is done for all
the pixels (up to 4096) which need to be sampled.

The system then runs through this map, taking
samples where indicated by the map. Again, because there
is no constraint on the organization of the map, any
sampling strategy is possible, up to the pixel limit of 4K.

The window buffer consists of a bidirectional
FIFO which is interfaced to the CPU and the video ADC
in the analog section. When the LUT indicates a sample is
to be taken, the ADC digitizes that pixel, and places it into
the FIFO.

The FIFO has synchronization signals which
allow it to tell the processor of its status, such as whether it
is empty, or full. Using this, we know when a full frame
has arrived.

4. Helicopter Application

We have conducted experiments in using vision
to navigate to the source and destination rings. The RCV is
a prime candidate for this task, as it is low powered, and
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light enough to be carried on a helicopter with a limited
payload capacity.

Our primary strategy has been to track the
starting area boundary lines and yard lines on the football
field. We assume that we know the width of the lines on
the football field, have an estimate of our height, and have
control over the yaw axis of the helicopter.

These assumptions allow us to use a simple
Hough transform to look for a single line to track (Davies,
1990).  In a generalized Hough transform, a line is
represented by two parameters, slope and x-intercept.
Each point in the image contains a set of  lines which can
pass through it, and depending on the intensity at that
location, votes for its set of lines. The parameterization
which receives the most votes is considered to be a line in
the image.

To minimize our visual computation costs, we are
only actively looking for horizontal and vertical lines. This
is possible because of the control we have over the yaw of
the helicopter, which reduces the rotational variance of the
line. Because we are only looking for vertical and
horizontal lines, we can eliminate the slope parameter in
our Hough transform. Therefore, we can store all the votes
in a vector consisting of a sum of rows and columns and
search for a peak in that vector. We find the peak in this
vector by finding the center point of a region above a
certain threshold. Because this is a very simple peak
detection algorithm, there is sensitivity to rotation and
noise, both of which are aggravated by the motion of the
helicopter.

Again because of the simplicity of this algorithm,
there is a peak performance area, where it is capable of
tolerating the most rotation and noise. This performance is
determined by the width of the line relative to the width of
the entire field. If the width is too narrow, the slightest
rotation will cause the peak to be too flat to reliably detect.
If it is too wide, then it is too hard to discern it from the
background, as is shown in Fig. 3.

If the width of the line is known, as it is in the
case of the football field, the peak performance point then
becomes a function of height of the craft. However,
keeping the height of the craft constant at all times is
difficult as we sometimes want to be lower or higher,
based on proximity to the barrier, the need to have a wide
field of view to look for disks, and other factors.

This peak response area was determined with the
use of a mock field and a camera and the RCV connected
to a PUMA 560 controlled using the RRAD system (Fagg,
et al, 1991). This allowed us to control the Puma in
Cartesian space and specify height in millimeters and end
effector rotation in degrees, giving us a clear view of the
peak response area, with and without noise added to the
field. We tested cases with and without noise, with the
noise being provided by placing the line on astro turf.
Astro turf was chosen as noise because it is used on the
football field at Georgia Tech where the competition will
be held.

5. Results

There are three primary results from our
experiments. They are computational time, rotation
tolerance, and noise tolerance. The first result is due to our
using a sub-sampling strategy, while the latter two are due
to dynamic foveation.

The Hough transform we use computes a sum of
rows and columns to determine the position of the line.
Because of this, its execution time is dependant upon the
number of rows and columns that are processed. Given n

rows and  columns, O(n2) mathematical operations are
performed to find the line.

Our sub-sample of the frame extracts a  32 x 32
array of pixels. A system which ran this algorithm on a full
512 x 512 frame would therefore take 256 times longer

(5122  /  322  = 256) to process the image. This would

Figure 2. Helicopter contest field and path to source ring. Figure 3. When the line is the size in image B, a clear peak is
discernable, as opposed to images A and C.
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slow down a 68332 enough that it would be unusable in a
real time situation.

The improvement in rotation tolerance is shown
in Figures 4 and 5. In the non-foveated cases, the
maximum allowable rotation decreases as camera height
increases. This is because as height increases, the apparent
width of the line decreases, therefore as it is rotated, the
Hough transform cannot find the peak because it flattens
out.

By using dynamic foveation, the relative line
width is tacked. When it falls below a given threshold, the
system zooms in to the last known position of the line. The
line now occupies more of the image, due to the zooming,
and this increases the rotation tolerance. Figure 4 shows a
comparison of foveated and non-foveated trials. In the
foveated case, when the performance starts degrading, the
system zooms into the image. The large peaks in the
foveated curve show where this happens.

In figure 5, results for noise are presented. The
noise used was a section of astro turf, similar to the field at
Georgia. The astro turf provided a large number of small
reflections when a light was placed by it. Because of this,
the non-foveated performance degraded faster than it did
without the astro turf.

In the foveated case, however, performance was
similar to that when noise was not used. This is because
the algorithm stays in the maximum response area.
Therefore, by using foveation, the tolerance to noise is
increased.

5.1 Comparison to other work

 The Cortex-1 system by Bederson(1992)  uses
special purpose log-polar sensor to generate spatially

variant images in real time. Their sensor provides a dense
fovea at the center, with exponentially decreasing
resolution towards the periphery. This approach would
work well in simulating biological approaches to vision.

Gooitzen van der Wal and Peter Burt(1992)  have
developed an integrated circuit which is capable of
building gaussian and laplacian pyramids at about 44
frames per second. Using this, they are able to run multi
resolution algorithms in real time.

Ian Horswell(1993) has developed a $1000 vision
system which consists of a 68332 directly interfaced to a
CCD chip. This provides a 192 x 165 resolution image,
which they sub-sample to run stereo tracking algorithms at
7-10 Hz.

While there are many excellent features in all
these systems, the prime advantage of the RCV is
flexibility. The RCV is capable of log polar sampling,
multi resolutional pyramid sampling, and any number of
other sampling schemes that can be devised. The
disadvantage of the RCV relative to other systems is that
this flexibility, combined with the use of a general purpose
microcontroller, results in a slower system than what
dedicated hardware can deliver.

6. Future Work

6.1.  Fur ther  appl icat ions of  dynamic
foveation

We also plan to examine other vision algorithms
to take advantage of dynamic foveation. We have adapted
the simple Hough transform, and it has provided good

Figure 4. Maximum tolerated rotation of line as a function of
height.

Figure 5. Same as figure 4, but this time with 1/5th of the field
covered with noise in the form of bits of paper.



results. However, other algorithms could benefit from this
approach, such as Blake’s active splines (Blake, 1992),
which represent a low cost way of tracking dynamically
moving objects. Instead of sampling an entire image,
dynamic foveation could be used to track only the last
known position of the spline.

One future experiment we plan to conduct is to
study the evolution of optimal sampling strategies based
on a given vision task, using a genetic algorithm
(Goldberg, 1988). This should give rise to non-rectangular
strategies in certain situations, such as log-polar sampling,
and would help illustrate the point that the RCV is not
limited to rectangular sampling.

6.2 RCV III

The next generation of the RCV will make use of
newer chipsets designed for video digitization, such as the
Samsung KS0116 series which is a 3-chip set capable of
decoding, digitizing and encoding color NTSC, SVHS,
and PAL video. This will allow us to generate processed
images in real time and display them on color monitors.

We wi l l  a lso  be mov ing away f rom the
68332BCC as the main controlling processor to Texas
Instruments DSP chips, such as the 320C40, which is
capable of up to 50 MFlops, as opposed to the 68332’s 2
MIPS. The recent reduction in price of these VLSI chips
will keep the cost of the RCV near the current level, while
greatly enhancing its capabilities.

7. Conclusion

We have presented a low cost, low complexity
real time vision system. The RCV is capable of arbitrarily
sampling an image, grabbing only those portions of the
visual field that may be of interest in a given situation.
This flexibility allows the RCV to be used in a large
number of applications, primarily as “quick vision” for
prototype mobile robots.

We have demonstrated how reduced sampling
results in a computation reduction over fully sampling an
image. Also, dynamic foveation provides greater rotation
and noise tolerance in our Hough transform line tracking
algorithm by keeping the visual field to be analyzed in the
peak region for this algorithm’s performance.
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